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Abstract

Plants tolerate large variations in the intensity of the light environment by controlling the 

efficiency of solar to chemical energy conversion. To do this, plants have a mechanism to detect 

the intensity, duration, and change in light as they experience moving shadows, flickering light, 

and cloud cover. Sugars are the primary products of CO2 fixation, a metabolic pathway that is rate 

limited by this solar energy conversion. We propose that sugar is a signal encoding information 

about the intensity, duration and change in the light environment. We previously showed that the 

Arabidopsis heterotrimeric G protein complex including its receptor-like Regulator of G signaling 

protein, AtRGS1, detects both the concentration and the exposure time of sugars [Fu, et al 2014 

Cell 156: 1084–1095]. This unique property, designated dose-duration reciprocity, is a behavior 

that emerges from the system architecture / system motif. Here, we show that another property of 

the signaling system is to detect large changes in light while at the same time, filtering types of 

fluctuation in light that do not affect photosynthesis efficiency. When AtRGS1 is genetically 

ablated, photosynthesis efficiency is reduced in a changing-but not a constant-light environment. 

Mathematical modeling revealed that information about changes in the light environment is 

encoded in the amount of free AtRGS1 that becomes compartmentalized following stimulation. 

We propose that this property determines when to adjust photosynthetic efficiency in an 

environment where light intensity changes abruptly caused by moving shadows on top of a 

background of light changing gradually from sun rise to sun set and fluctuating light such as that 

caused by fluttering leaves.
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1. Introduction

Cells detect different chemical stimuli through binding the corresponding signaling molecule 

to specific receptors that consequently trigger an appropriate response. In many situations, 

the concentration of these signaling molecules is not static but changes over time. Therefore, 

cells not only need to act as threshold detectors, but must also be able to interpret or filter 

temporal variations in the signal. Understanding the control mechanisms that allow cells to 

respond to changing environmental conditions is a fundamental problem in cell biology.

Two examples demonstrate the importance of time-dependent signaling. The first example 

pertains to killer T-cell activation by antigen presentation. T-cells must tolerate slowly-

changing levels of antigens while still remaining competent to become activated in respond 

to acute changes in antigen presentation. This is a critical decision because commitment to 

activate is both energetically costly and precarious to healthy cells. To accomplish this, a 

change detector for T-cell activation was proposed by Kim and Lee (1) by which T cells 

compare instantaneous changes in signals to long-term steady-state levels. The second 

example pertains to plant cells deciding how to allocate newly-fixed carbon, mostly as 

sugars. Sugar levels change dramatically between the day and night (2) and sources of and 

sinks for sugars also change over time independently of the changes over the diel cycle. 

Recently, we proposed a mechanism called Dose-Duration Reciprocity to explain how plant 

cells are able to generate a maximal response to both low-sustained and high-transient 

glucose levels (3).

Here, we present a third example that demonstrates how plants are able to respond to rapid 

changes in both signal frequency and amplitude on top of slow variations in baseline levels. 

Plants are sessile and unable to escape their environment, therefore they evolved cellular and 

chemical control mechanisms to cope with the variability of sunlight impinging on the plant. 

The time scales of this variability can range from sub-seconds to hours. Moving clouds 

reduce light to different levels and for different times, shadows produce large changes in 

light over minutes, and moving leaves produce flickering light in a time scale of sub-seconds 

to seconds. These types of fluctuations occur in the presence of large changes in light caused 

by the Earth’s daily rotation. In other words, the light signal fluctuates on top of a 

periodically changing baseline. Therefore, a simple threshold detector is not sufficient for 

plants to efficiently utilize sunlight; rather additional control mechanisms that allow plants 

to interpret changing environmental conditions are required.

Without the ability to respond to temporal changes in light, unquenched solar energy would 

destroy the photosynthetic antenna and potentially kill the entire leaf. On the other hand, not 

maximizing photosynthesis efficiency reduces competitiveness with potential lethal 

consequences when neighbors consume the limited light resource. The key question then is 

how photosynthetic cells detect light change and maximize photosynthetic efficiency 
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accordingly while at the same time guard against photobleaching in a light environment that 

is unpredictable in duration and intensity.

The identity of the control signals is not known but it is logical to assume that they are 

products of the light-dependent processes. The immediate products of the light reaction are 

NADPH, ATP, O2, and protons, which are pumped across the thylakoid membrane of the 

chloroplast to create a steep pH gradient between the stroma and thylakoid space (lumen). 

CO2 fixation occurs in the stromal space and is strictly dependent on pH and ATP (4). The 

immediate product of CO2 fixation is glycerate-3-phosphate which requires ATP and 

NADPH for final conversion to hexoses, including glucose, thus glucose is rate-limited by 

the light reactions.

The AtRGS1/heterotrimeric G protein complex is one of three well-studied detectors of 

glucose in plants (5–9). AtRGS1 is the prototype 7-transmembrane (7TM) Regulator of G 

Signaling (RGS) family of GTPase-accelerating proteins (5). We constructed a mathematical 

model of the G protein signaling pathway in plant cells that enables both the concentration 

and duration of glucose to control cell behavior. The model is shown in Fig. 1A. In this 

model, the AtRGS1/G protein cycle is not described by a simple two-state system, rather the 

model describes frequent oscillation between an inactive set of intermediates (left cycle in 

Fig. 1A) and an active set of intermediates (right cycle in Fig. 1A). In contrast to animal G 

proteins, the Gα subunit of the plant heterotrimeric G protein complex spontaneously 

exchanges bound GDP for GTP (10, 11). GTP is not limiting in cells, therefore control 

occurs by holding the G protein complex in its GDP-bound, inactive state. The Gα binding 

is in equilibrium between the RGS and Gβγ sites, but D-glucose shifts the equilibrium 

toward the RGS site and releases Gβγ. AtRGS1 accelerates GTP hydrolysis and interacts 

with different G protein complex intermediates at the plasma membrane. Thus, removal of 

AtRGS1 from the plasma membrane allows the G protein complex to move from the 

inactive cycle to the active cycle. This occurs by AtRGS1 endocytosis (the central part of 

Fig. 1A). Previously, we found that to appropriately respond to glucose signals of varying 

strength and duration required two kinases with distinct biochemical properties (3). The first 

kinase has fast activation kinetics used for pulses of high concentrations of glucose. The 

second kinase has slow kinetics used for long periods of low concentrations of glucose. Both 

kinases are members of the WITH NO LYSINE (WNK) kinase family (11); kinase 1 is 

encoded by the WNK8 and WNK10 genes (x15) and kinase 2 is encoded by the WNK1 gene 

(x14)

Here, we show that under conditions of fluctuating light the photosynthesis efficiency of 

Arabidopsis depends on AtRGS1. Therefore, in addition to dose and duration, the 

AtRGS1/G protein system detects other temporal properties of natural sunlight. In particular, 

we use mathematical modeling to demonstrate that the AtRGS1 system has the ability to 

detect the temporal boundaries between changes in sunlight intensity through free AtRGS1, 

GαGTP, and Gβγ while filtering noise and remembering the immediate past signaling 

history. We propose a system motif that encodes the requisite properties of change detector, 

filter, and memory.
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In the following sections, we show that detection of light fluctuations is a property of the 

AtRGS1/G signaling system and is a form of adaptation behavior. Disruption of this system 

abrogates the ability of plant cells to regulate the efficiency of photosynthesis in leaf cells. 

By assuming a direct positive correlation between light intensity/duration and glucose, the 

signaling system has the emergent property of detecting changes in light intensity and 

duration such as occurs with shadows passing across the leaf. Interestingly, this property 

does not require the WNK kinases previously shown to be important for dose-duration 

reciprocity whereas system memory does. The primary mechanism for this emergent 

property is the formation and dissociation of AtRGS1:GαGTP βγ and AtRGS1:GαGTP. The 

amounts of free AtRGS1, GαGTP, and Gβγ are the major constituent of the change detector, 

and the amount of free AtRGS1 is also the major constituent of the filter. Finally, we 

speculate that this change detector informs the plant of fluctuations in sunlight intensity used 

to make the appropriate adjustments in photosynthesis efficiency. This is important in 

locations such as canopy understory where neighboring plants temporarily shade each other.

2. The emergent property: change detection

Considerable evidence supports AtRGS1 as a component of a glucose-sensing pathway (12–

15), however, because the grasses lack homologous 7TM-RGS proteins yet retain a 

functional heterotrimeric G protein complex (11, 16), the role of a 7TM-RGS protein in 

glucose sensing must be peripheral such as an add-on component that provides a unique 

function. In this sense, AtRGS1 is a modulator. Therefore, we hypothesized that AtRGS1 

imparts some glucose sensing property needed for non-grass plants, specifically the ability 

to compete in fluctuating light such as within a canopy. Grasses are unable to compete well 

with other plant species for access to light and are not successful on forest floors. Biomes 

where grasses are found are open, typified by the savannahs of the pampas fields in 

Argentina, the grassland prairies of the Midwest US, and wild rice marshes throughout the 

world. These biomes do not have forest canopies and thus are not heavily subjected to 

fluctuation by shadows. Plants that contain 7TM RGS proteins grow in communities where 

they must compete with other species for light access with maximum efficiency. This 

suggests that AtRGS1 improves plant fitness in fluctuating light environments. We expect 

that RGS proteins extracts important features and information from the light pattern that 

provides plants using RGS proteins with a property that affords a competitive advantage 

over the grasses which lack RGS proteins.

We assumed that this property involved glucose produced by photosynthesis therefore we 

compared photosynthesis parameters in plants having or lacking a functional AtRGS1 

protein. We tested this idea by subjecting 5-week-old plants to stable and changing light 

conditions (Fig. 1B) while simultaneously determining photosystem II (PS II) efficiency, 

nonphotochemical quenching (NPQ, total ability to dissipate energy), the reversible 

component of NPQ (qE), and the irreversible component of NPQ or photodamage (qI). As 

shown in Fig. 1C–F, rgs1 null mutants behaved similarly to wild type (WT) under flat day 

conditions (lights on → lights off, Fig. 1B). However, under varying light, the rgs1 mutants 

were less efficient in photosystem II. In the first condition, the light environment 

approximated a sinusoidal pattern using small steps in order to mimic the natural 

environment of light slowly increased from the experimental dawn time point up to its 
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maximum then decreased to the experimental dusk time point. The second changing light 

environment was like the first except with pulses of light added. The difference in 

photosynthesis efficiency between wild type and rgs1 mutants was observed in all 7 

biological replicates and to similar degree in most of the replicates. rgs1 mutants had a 

decreased PS II efficiency (Fig. 1C) due to increased NPQ (Fig. 1D). The regulated and 

reversible qE component of NPQ and not photochemical damage (qI) accounted for the 

increased NPQ in the rgs1 mutant (cf. Fig. 1E and F). Under a sinusoidal light environment 

with fluctuations in light intensity added, the rgs1 mutant more profoundly deviated from 

wild type behavior in adjusting the NPQ suggesting the component in the light environment 

that is of most importance is the change in light intensity. Importantly, the behavior does not 

appear to involve a signal threshold.

3. Identification of the change detectors within the system motif

We used our mathematical model to investigate which components of the G protein 

signaling pathway respond to the temporal light profiles shown in Fig. 1B. Our previous 

model used glucose as input whereas here we input light, which will generate glucose from 

photosynthesis. In order to connect light-intensity to glucose production we made use of the 

findings of Mäkelä, et al (17) showing a non-linear relationship between light and 

photosynthesis efficiency. In this case, photosynthesis efficiency saturates as the light 

intensity increases. Based on these findings, we used the following equation for the time-

dependent glucose concentration, L, as a function of the temporal varying light intensity 

hν(t):

(3.1)

where the bi’s are parameters whose values are chosen such that the glucose-input model 

and light-input model have approximately the same proportion of internalized AtGRS1. In 

section 5 (Fig. 4), we demonstrated the validity of this equation by comparing the proportion 

of internalized AtRGS1 between simulation output and the observed experimental data. The 

light-input model simulated an approximate 15% increment in internalized AtRGS1 at 430 

μEm−2s−1 illumination for 10 min. This is what was observed experimentally, therefore, 

Equation 3.1 properly describes the light-induced (photosynthesis) change in glucose level.

We used our model to investigate the responses of each system component for wild type 

under periodic light presentation (16 h on-8 h off) as well as constant light (430 μEm−2s−1, 

100 μEm−2s−1, and 42 μEm−2s−1) and darkness (Fig. 2). We used the dark steady-state 

concentrations as initial conditions for the equations (SS1). Fig. 2A shows that 

AtRGS1:GαGTP (x5), GαGTP (x9), and Gβγ (x10) spiked at lights-on, and free AtRGS1 (x1), 

AtRGS1:GαGDP (x4), and GαGDP (x8) spiked both at lights-on and lights-off. The other nine 

model components did not show this behavior. Free AtRGS1 (x1) and GαGDP (x8) had 

similar decay profiles and the respective amounts at steady state were similar to the steady 

state for constant irradiation and darkness (Fig. 2A, open and closed circles, respectively). 

During the light-on period, the amounts of these species returned to pre-illumination levels, 
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indicating a form of adaptation behavior (18). Among these six components, free AtRGS1 

and GαGDP were the only ones that showed the spikes at both lights-on and lights-off. 

Because plant cells need to detect rapid change in light, the response system must contain 

components that respond on appropriate time scales. This suggests that the G protein system 

uses free AtRGS1 and GαGDP to detect rapid changes in light.

To further characterize the system’s ability to detect changes in light, we generated stimulus-

response curves in which the maximum change and steady state values of free AtRGS1 and 

GαGDP are computed as a function of light intensity (Fig. 2B–C). The panels in Fig. 2B–C 

show the relationship between the amplitude of the response and the change in light 

intensity. Free AtRGS1 and GαGDP spiked when the irradiance intensity was larger than 50 

μEm−2s−1, suggesting that there is a threshold for the stimuli intensity needed to trigger a 

response. Above this threshold, the system only responded in the narrow range of 50 

μEm−2s−1 to 150 μEm−2s−1, suggesting that the system behaves in a quasi-switch-like 

manner.

The amount of free AtRGS1 and GαGDP at steady state under constant light changed only 

slightly as intensity increased (black line, Fig. 2B), indicating that these components display 

adaptation behavior. This was not true for the other 4 change detectors, AtRGS1:GαGDP 

(x4), AtRGS1:GαGTP (x5), GαGTP (x9), and Gβγ (x10) (Supplementary S1).

Because kinases 1 (x15) and 2 (x14) are important in the dose-duration reciprocity, we 

examined their importance in detecting changes in light. The spike of free AtRGS1, 

AtRGS1:GαGDP, GαGDP, GαGTP, and Gβγ still occurred in the absence of the fast kinase 1 

(x15) and the slow kinase 2 (x14), but only AtRGS1:GαGTP (x5) lost the spike feature in the 

absence of Wnk8/10 (data not shown). Hence, the model predicts that the kinases do not 

play a major role in detecting changes in light intensity. Taken together, the change detectors 

consisted of a sensitizing subsystem that included the components: AtRGS1 complexed with 

either GPAGDP (x4) or GPAGTP (x5), GPAGTP (x9), GPAGDP (x8), Gβγ (x10), and free 

AtRGS1 (x1).

4. Change detectors under natural conditions

In order to understand the change detection property under light conditions found in nature, 

we gradually changed the illumination to mimic a cloudless long (16 h) day from sunrise to 

sunset. As shown in Fig. 3A, under this condition, free AtRGS1 (x1), and to a lesser degree, 

GαGDP (x8) displayed the change detection property, but only at the beginning and end of 

the day. This suggests that small incremental increases in light as occurs from the rotation of 

the Earth are blind to the change detector.

This implies that either large changes in amplitude and/or a sustained period of light are 

needed before free AtRGS1 (x1) levels change significantly. To distinguish between these 

two possibilities, we simulated conditions with varying steps in amplitude, and duration, and 

maximum intensity of the day (cloudy to sunny days) (Fig. 3B–D). The irradiance changed 

every 10 (Fig. 3B) or 60 minutes (Fig. 3C–D) with the same increment (0 μEm−2s−1, 10 

μEm−2s−1, 20 μEm−2s−1, and 30 μEm−2s−1) over the linear light period. The maximum light 
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level (MH) at noon changed accordingly. The amount of light at night was also increased to 

mimic a full moon (Fig. 3D). When the irradiance was 10 minutes (Fig. 3B), then free 

AtRGS1 (x1) displayed spikes only at the beginning and end of the day as simulated above 

using gradual changes in light (Fig. 3A). However, if the irradiance intensity was sustained 

for 60 minutes, the amount of free AtRGS1 (x1) (Fig. 3C–D) and GαGDP (data not shown) 

spiked at every change in light intensity. These results indicate that the duration of the 

change is more important for change detection than the increment of the change itself.

5. Shadow detector

Our hypothesis is that the G protein system uses free AtRGS1 (x1) to detect light/dark 

changes caused by shadows that meet intensity and duration thresholds. For example, a 

shadow slowly passing over a leaf may be distinguished from rapid flickering light caused 

by a leaf in the wind, from light changes caused by the Earth’s rotation. To test this 

hypothesis, we used the model to compute the amount of internalized AtRGS1 and then 

performed experiments to test the model’s prediction.

The profiles of the free AtRGS1 under transient illumination and high light intensity (Fig. 

4A) showed that the spike amplitude decreased when the duration decreased. The proportion 

of internalized AtGRS1 (Fig. 4B) indicates that the proportion of internalized AtRGS1 is 

only significantly increased for the 10 minutes case. Note that there are seven model 

components that contain AtRGS1, free AtRGS1 (x1), AtRGS1:GαGDP βγ (x2), 

AtRGS1:GαGTP βγ (x3), AtRGS1:GαGDP (x4), AtRGS1:GαGTP (x5), phosphorylated 

AtRGS1 (x11), and internalized AtRGS1 (x12), therefore the proportion of internalized 

AtRGS1 in Fig. 4B is the amount of x12/C1, where C1=x1+x2+x3+x4+x5+x11+x12 is the 

total amount of AtRGS1. Figs. 4C–D show experimental results verifying the Equation (3.1) 

and model predictions in Figs. 4A–B. In the experiment, the simulated Arabidopsis 

seedlings were under high intensity illumination (i.e., 430 μEm−2s−1) for short duration (i.e., 

2 and 10 minutes) with the control case being darkness. The proportion of internalized 

AtRGS1 was only significantly increased in the 10 minute treatment by ~ 15%, which 

approximated the prediction in Fig. 4B that the proportion of internalized AtRGS1 increased 

from 10% to ~30%. Hence, the experimental data in Fig. 4C and 4D validates the light-input 

model (Equation 3.1) quantitatively capturing the proportion of internalized AtGRS1. 

Moreover, the experimental data in Fig. 4C and 4D supports our major assumption of the 

light-input model, namely, that there is a correlation between glucose level and light 

intensity. While it is not possible to measure the glucose level in single cells, the simulated 

proportion of internalized AtRGS1 correlated with the illumination treatment greater than 2 

min duration indicating that the time scale of changing glucose levels match the light 

intensity change. This means that cells distal to the source of glucose production react 

roughly with nearly real-time kinetics.

The results shown in Fig. 4E are the model predictions for the maximum proportion of 

internalized AtRGS1 under varying irradiance duration and intensity. This suggests that 

most passing clouds that cause short changes in light duration or small changes in intensity 

do not generate a response by the system.
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6. Amplifiers

The above dynamics indicates that the free AtRGS1 (x1) is a critical component in the G 

protein system, even though its total amount is much smaller than other components in the 

system. This fact suggests two possibilities: 1) The parameter rate used in simulation is not 

optimized. For example, a small change in k18, k25, and k27 enlarged the range of free 

AtRRGS1 (data not shown). 2) There exists an amplifier outside the proposed system motif 

that detects and respond to changes in free AtRGS1. Because this amplifier should mimic 

the changes of AtRGS1 (x1) by having both the adaptation behavior and change by a large 

amount, none of the remaining components in the original light-input model are candidates. 

Therefore, the candidates must be some proteins or mechanism outside the system. For 

example, downstream of GαGTP (x9) includes critical gene expression that affect the photon 

reaction or photosynthesis efficiency which could also feedback on the inactivated cycle 

(glucose reaction).

7. Robustness of the shadow detector using free AtRGS1, GαGTP, and Gβγ

Our results were based on the final parameter set used in Fu et al. (3). However, they showed 

that another 50 parameter sets also approximated the wild type experimental data. Therefore, 

we tested these other 50 parameter sets at different light intensities and found that all 50 sets 

of parameters approximated the observed data at different irradiance (data not shown).

The shadow detector property of components AtRGS1:GαGDP (x4), AtRGS1:GαGTP (x5), 

and GαGDP (x8) were sensitive to the parameter values and light intensity. Some depended 

on kinase 1 (data not shown). However, we found that free AtRGS1 (x1), GαGTP (x9), and 

Gβγ (x10) operated under all the tested parameter sets and therefore are robust.

8. System memory

We sought to determine how kinase 1 (x15) and 2 (x14) contribute to AtRGS1 internalization 

in the presence of a fluctuating light input. Toward this end, we tested two versions of our 

model to simulate and predict AtRGS1 internalization in wild type, kinase 1 minus, and 

kinase 2 minus cells. Fu et al. (3) determined that the kinases operate on different time 

scales, with kinase 2 having slower activation kinetics than kinase 1. To investigate how 

these differential kinetics influence long-term AtRGS1 dynamics, we simulated each model 

in the presence of constant 100 μEm−2s−1 light intensity until each model achieved steady 

state (Figs. 5A). While the steady state amount of internalized AtRGS1 in the absence of 

kinase 1 was only slightly reduced, in the absence of kinase 2 minus, the amount of 

internalized AtRGS1 reached ~50% of wild type. At 430μEm−2s−1 light intensity, both 

kinase 1 and kinase 2 minus-models reached steady-levels similar to models containing both 

kinases (data not shown), suggesting that the differential kinetic contributions of each kinase 

to AtRGS1 internalization are dose-dependent.

Next, we investigated how each theoretical mutant responds to light inputs that change 

slowly in time mimicking a diel cycle (Figs. 5B). We simulated AtRGS1 internalization for 

each model using a sinusoidal input function constructed from small step changes in 

concentration that reached peak amplitude for 100 μEm−2s−1 over a 1000 minute time 
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period. The control, kinase 1 minus, and kinase 2 minus models exhibited discreet increases 

in AtRGS1 internalization that were coincident with discreet increases in the light input. 

However, AtRGS1 returning to the membrane was slightly delayed with respect to the 

discreet decreases in the light input and the level did not return to its pre-stimulus levels in 

the wild type and kinase 1-minus models. In contrast, AtRGS1 return to the membrane in the 

kinase 2-minus model perfectly aligned with decreases in the light input. Thus, while the 

kinase 2-minus model system exhibited a squared sinusoidal AtRGS1 internalization profile, 

the wild type and kinase 1-minus model systems became more asymmetric with each 

subsequent squared-sinuosidal pulse of light (note positions of amplitude arrows in 

succession). Moreover, during irradiation, AtRGS1 internalization peaked at approximately 

from 40% to 48% for control (i.e., solid line in Fig. 5B), and peaked at approximately from 

32% to 40% for the kinase 1-minus model (i.e., dashed line in Fig. 5B). However, AtRGS1 

internalization peaked always at approximately 30% for the kinase 2-minus model (i.e., 

dashed-dotted line in Fig. 5B). On the other hand, only the amount of AtRGS1 internalized 

in the kinase 2-minus model returned to pre-stimulus levels following removal of the light 

stimulus. Taken together, these results suggest that the memory of stimulus is genetically 

encoded by kinase 2 (x14), not kinase 1 (x15). In genetic terms, kinase 1 is encoded by 

WNKs8/10 and kinase 2 is encoded by WNK1 (3).

9. The system motif underlying the shadow detector

In our system, free AtRGS1 has adaptation behavior such that it returns to its pre-stimulus 

levels during illumination. Examples of such adaptation behavior are found in many 

biological systems, such as bacteria (19, 20), yeast (20), and human stem cells (21). Many 

physiological responses also possess adaptation behavior whereby the system components 

return to their pre-stimulus levels in the presence of a sustained signal. Examples of such 

processes include bacterial chemotaxis (22, 23) and MAP kinase signaling in yeast (24, 25).

To explore the system motif responsible for the adaptation behavior, the model was 

simplified to its critical elements that preserved the dynamics of the complete model 

(designated toy model). The amount and profile of all components in the toy model was 

similar to the amount and profile of the corresponding components in the unabridged light-

input model (Fig. 1A.). The toy model was formulated as the following process: Gα was 

more stable when bound with GTP than when bound with GDP, so the components related 

to GDP, namely, AtRGS1:GαGDP βγ (x2), AtRGS1:GαGDP (x4), GαGDP βγ (x6), and 

GαGDP (x8), were effectively removed from the system. Moreover, in order to test whether 

phosphorylation was the critical process to generate the adaptation behavior, the components 

related to phosphorylation, namely, phosphorylated AtRGS1 (x11), kinase1 (x15), and 

kinase2 (x14), were also removed from the system. The toy model lacked GαGDP (x8), 

indicating that GαGDP is not critical components for the shadow detector, even though 

GαGDP has a profile similar to free AtRGS1 (x1).

Based on the toy model, we propose the mechanism for the dynamic behavior underlying the 

shadow detector. As illustrated in Fig. 6, the analysis revealed four predominate processes: 

(i) dissociation of AtRGS1:GαGTP βγ, (ii) dissociation of AtRGS1:GαGTP, (iii) formation 

of AtRGS1:GαGTP, and (iv) dissociation of AtRGS1:GαGTP βγ to generate the spike and 
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adaptation behavior of free AtRGS1 (x1). The loop contained AtRGS1:GαGTP βγ (x3), 

AtRGS1:GαGTP (x5), internalized AtRGS1 (x12), free AtRGS1 (x1) generated a feedback 

loop for free AtRGS1 (x1). A substrate depletion of AtRGS1:GαGTP βγ with a delayed 

return of free AtRGS1 (x1) generated the adaptation behavior of free AtRGS1 during 

illumination. Substrate restoration of AtRGS1:GαGTP βγ caused a rapid increment of free 

AtRGS1 onset of a shadow. Formation of AtRGS1:GαGTP through process (iii) generates 

the spike of GαGTP (x9) and Gβγ (x10).

Passing of the shadow

At the light-off->light-on transition (Fig. 6A), the G protein equilibrium shifts from 

AtRGS1:GαGTP βγ (x3) to AtRGS1:GαGTP (x5) through process (i) which reduces the free 

AtRGS1 instantly by depleting the AtRGS1:GαGTP βγ (x3) pool. After time, the generated 

AtRGS1:GαGTP (x5) dissociates into internalized AtRGS1 (x12) and GαGTP (x9) through 

process (ii), and the free AtRGS1 (x1) is replenished from the internalized AtRGS1 (x12). 

This process generates the spike of free AtRGS1 at the light off->on transition. Free 

AtRGS1 associated with GαGTP (x9) forms AtRGS1:GαGTP (x5) through process (iii), 
followed by process (ii) to replenish the free AtRGS1 pool. These two processes keep free 

AtRGS1 as a sustained level (between the minimum and the pre-stimulus level) after the first 

spike, and thus underlie the mechanism for the adaptation behavior of free AtRGS1. 

Moreover, the association rate k18 is much larger than k9, which means that GαGTP (x9) 

preferentially associates with free AtRGS1 (x1) over Gβγ (x10). Hence, process (iii) is the 

predominant consumer of GαGTP and the generator of the spike of GαGTP. Since Gβγ (x10) 

is downstream of GαGTP, Gβγ has a similar profile to GαGTP.

Onset of a shadow

At the light-on-> light-off transition (Fig. 6B), the G protein equilibrium shifts back from 

AtRGS1:GαGTP (x5) to AtRGS1:GαGTP βγ (x3), which increases free AtRGS1 because it 

increases the AtRGS1:GαGTP βγ (x3) pool through process (iv), and hence generates the 

spike of free AtRGS1 at the light-on-> light-off transition. Therefore, G protein shifting 

between AtRGS1:GαGTP βγ (x3) and AtRGS1:GαGTP (x5) generates the spike of free 

AtRGS1 and the two processes (ii)–(iii) are the reason for adaptation of free AtRGS1.

10. Synopsis

The architecture of heterotrimeric G signaling in plant cells embodies not only the dose-

duration reciprocity property previously described but, as shown here, the property to detect 

light-dark transitions such as occur at the beginning and ending of the day and during the 

movement of shadows. Hence, the architecture contains a shadow detector. Such a property 

is useful in maximizing photosynthesis efficiency in a fluctuating light environment.

Integral control is a commonly-used process to control the output error. Adaptation behavior 

can be generated by integral control such in bacterial chemotaxis (26) and calcium 

homeostasis (27). However, adaptation behavior can be generated by processes other than 

integral control (28). A negative feedback loop or an incoherent feedforward loop in models 

describing the dynamics of some enzymes (e.g. three-node enzyme network) can also 
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generate adaptation behavior (28). In addition, Hao, et al and Ni, et al showed that integral 

control, feed-forward motifs, and negative feedback loops also generate adaptation behavior 

(29, 30). In fact, integral control and feed-forward motifs achieve better adaptation behavior 

than negative-feedback motif (31). Our light-input model showed that the feedback loop (i.e. 

i. in Fig 6, substrate depletion of AtRGS1:GαGTP βγ with a delayed return of free AtRGS1) 

can also generate adaptation behavior.

Specifically, our mathematical modeling demonstrated that the AtRGS1 system has the 

ability to detect the temporal boundaries between changes in sunlight intensity through free 

AtRGS1, GαGTP, and Gβγ while filtering noise and remembering the immediate past 

signaling history. Hence, the amounts of free AtRGS1, GαGTP, and Gβγ were the major 

constituent of the change detector, and the amount of free AtRGS1 was also the major 

constituent of the filter. Detection of light fluctuations was a property of the AtRGS1/G 

signaling system and was a form of adaptation behavior. For this adaptation behavior, our 

reduced system showed that G protein shifting between AtRGS1:GαGTP βγ and 

AtRGS1:GαGTP generated the spike of free AtRGS1 and the two processes, dissociation of 

AtRGS1:GαGTP and formation of AtRGS1:GαGTP, are the reason for adaptation of free 

AtRGS1. Therefore, we hypothesized that this change detector informed the plant of 

fluctuations in sunlight intensity and was used to make the appropriate adjustments in 

photosynthesis efficiency.

11. Materials and Methods

Photosynthesis efficiency and nonphotochemical quenching of rgs1 mutants

Experiments measuring photosynthesis efficiency and the calculation of NPQ, qE, and qI are 

described in Dutta, et al 2015 (32).

AtRGS1 endocytosis

Arabidopsis seeds expressing AtRGS1-YFP were sterilized with ethanol (first with 70%, 10 

min, 95% 10 min). Twenty to thirty seeds were then sown on 1-mL liquid 1/4 X Murashige 

and Skoog (MS) medium without sucrose in 24-well plates and stratified at 5°C for 2 days, 

followed by 2 hours light, then grown in darkness at 27 °C for 4 days. For best results, the 

plates kept in darkness should be moved to the microscope room on the third day. Seedlings 

were moved to a well with 2-mL sterile water for 5–10 minutes to wash out MS. After the 

wash out, the seedling was irradiated in the well with 430μEm−2s−1 or 100 μEm−2s−1 for 10 

minute then moved to the slide for imaging. The hypocotyl epidermal cells imaged for this 

study were located 2–4 mm below the cotyledon hook. A Zeiss LSM710 confocal laser 

scanning microscope with C-Apochromat 40X 1.2N.A. water immersion objective was used. 

The YFP fluorescence was excited by a 514-nm argon laser and the photomultiplier detector 

was set between 526 nm and 569 nm for quantification. The proportion of internalized 

AtRGS1 was analyzed by Image J. Illumination was as short as possible to avoid heating or 

photodamage.

Simulation setting for light-input model

For the final parameter set, the initial steady state denoted as SS0, namely,
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used in Fu et al (3) when L= 0 (no glucose) was used as the initial value in the current 

simulations. This steady state represents plant cells at the end of their dark phase in a diel 

cycle, a time when the cellular glucose level is extremely low. For the light-input model, the 

initial value was changed to SS1, by adding the initial value of glucose, L=0, into the 16th 

component of SS0, namely,

The ODEs described by Fu and coworkers (3) were used except in simulations of the kinase 

mutants. In these simulations, kinase 1 and 2 mutants were tested by setting x15 (Kinase 1) 

and x14 (Kinase 2) component values to zero, respectively, while other setting was the same 

as wild type. The light-input model was performed by the MatLab solver ODE 15S and the 

Euler implicit method when the illumination was sustained and non-sustained, respectively.

Simulation setting for robustness of the shadow detector

Fu et al. used an evolutionary algorithm to estimate the parameter sets that fit the observed 

endocytosis data. The uncertainty measurement for each parameter set was measured by the 

score: squared difference between the model output and experimental data at each time 

course in the experiment. The method was as described in detail in (3). The simulation 

output of the top 50 scored parameter sets (k1, …, k30) fitted the experimental data (3) well, 

namely, the scores were less than 30. Hence, ODEs with the top 50 parameter sets captured 

the endocytosis behavior in wild type. Moreover, these ODEs also captured the relaxation 

experimental data (Figure 4 in (3)). The final parameter set in (9) was taken from the median 

values of these 50 parameter sets, which represented the mean of these parameter values. In 

order to examine the robustness of the shadow detector, we tested the simulation output of 

the ODEs based on these 50 parameter sets. We randomly chose 1000 parameter sets within 

a range of 1/2-2-fold of these 50 parameter sets. The initial value was chosen from the 

steady state of the light-input model with hv=0 (no light) and initial value at (0, 1000, 

50000, 100, 1000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). We then used the same simulation setting as 

in Fig. 2 to test the shadow detector profiles for the ODEs with the 1000 parameter sets.
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Appendix

1. Equations

Glucose-input model
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The parameter values are chosen from (11).

Light-input model
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where b1 = 0.0426, b2 = 143.6, and b3 = 0.129.

Reduced Light-input model

Liao et al. Page 17

J Theor Biol. Author manuscript; available in PMC 2018 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Liao et al. Page 18

J Theor Biol. Author manuscript; available in PMC 2018 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• Plants regulate photosynthesis efficiency to avoid photodamage and to 

maximize sugar

• Trafficking of RGS1 protein is the key mechanism detecting changes in light 

and dark

• System motifs encode a noise filter, memory, and a shadow detector
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Figure 1. The light-glucose-sensitizing network of the model and relative photosynthesis 
efficiency and nonphotochemical quenching of rgs1 mutants under 3 different light regimes, and 
the illumination flicker
(A) This network has three cycles: (1) the inactivated cycle (left), (2) endocytosis (center), 

and (3) the active cycle (right). The input of this network is light intensity (hν) which drives 

photosynthesis to produce glucose (L). When the presumed D-glucose co-receptor x13 

receives the glucose stimulus, x13 promotes the AtRGS1/heterotrimer complex (x5) to enter 

the endocytosis cycle. There are two entry points for endocytosed AtRGS1: (1) 

phosphorylation by kinase 1 and/or kinase 2 and (2) a phosphorylation-independent pathway 

controlled by rate k2. This system architecture confers the ability to use both the 

concentration and the timing of glucose to activate G signaling, a property coined “dose-

duration reciprocity” by Yu and coworkers (10). Kinase 1 null mutations abrogate the ability 
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to activate G signaling at high concentrations of glucose for short pulses, but have no effect 

on the ability to activate G signaling when presented with low concentrations of glucose 

over a longer time. In contrast, kinase 2 null mutations abrogate the ability to activate G 

signaling at low concentrations of glucose presented over a long period, but have no effect 

on the ability to activate G signaling at high concentrations of glucose for short pulses. The 

components circled in red are “change detectors”: free AtRGS1 (x1) and Gβγ (x10) in the 

endocytosis, AtRGS1:GαGDP (x4) and AtRGS1:GαGTP (x5) in the inactivated cycle, and 

GαGDP (x8) and GαGTP (x9) in the activated cycle. These detect the light-on and light-off 

transitions (this work). (B.) Schematics of the light presentations to 5-week-old plants in 

chambers under 16:8 light:dark cycles. Details of the day length, light intensity, change in 

intensity, and fluctuations in light are described in Dutta, et al 2015 (33). The light 

presentations are labeled as “flat day” followed by “sinusoidal day”, followed by a 

“fluctuating sinusoidal day” and ending on a flat day. They are not drawn to the same time 

scale, rather to sampling cycle. (C–F). Heat maps showing the differences in the indicated 

photosynthesis parameter between an rgs1 null mutant and wild type with the color bar 

indicating the numerical values. Black on the heat map means that the rgs1 mutant has the 

wild type value at the indicated time of sampling. Seven replicates of plants were obtained 

on different days. The replicates are clustered according to similarity. The photosynthesis 

parameters quantitated are: (C.) PS II Efficiency. (D.) NPQ, nonphotochemical quenching. 

(E.) qE, (F.) qI.
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Figure 2. The dynamics of all change detectors for under single illumination pulse and the 
dependence on intensity
(A.) The abundance of the six components, free AtRGS1 (x1), AtRGS1:GαGDP (x4), 

AtRGS1:GαGTP (x5), GαGDP (x8), GαGTP (x9), and Gβγ (x10), highlighted in Fig. 1A show 

transients over time (spikes). The time and duration of the light is indicated by blue shading. 

The length of the day is 16 hours. The response of the system to variable illumination from 

high intensity to low intensity is displayed by the red solid, magenta dashed, and blue 

dashed-dotted curves. These curves are initialized to the steady state values for darkness, 

designated SS_dark. The white (open) circle is the steady state for continuous illumination 

under 430 μEm−2s−1 intensity with no variation and is designated SS_light. When the 
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irradiance intensity is high, these six components spike at the time of illumination or 

darkness. Hence, free AtRGS1, AtRGS1:GαGDP, AtRGS1:GαGTP, GαGDP, GαGTP, and 

Gβγ are “change detectors” of illumination. More precisely, AtRGS1:GαGTP, GαGTP, and 

Gβγ detect the time the irradiance is on, but free AtRGS1, AtRGS1:GαGDP, and GαGDP 

detect both light on and light off transitions. In addition, free AtRGS1 and GαGDP have a 

similar profile; and GαGDP and GαGTP also have a similar profile during illumination and 

darkness. For free AtRGS1, the light pulse mainly changes the value of free AtRGS1 at the 

time of illumination. At the light on and off transitions, the spike is maintained, but its 

amplitude decreases when the irradiance level decreases. During a low-level irradiance free 

AtRGS1 returns to the darkness steady state while a during a higher irradiance level, free 

AtRGS1 returns to the SS_light, even the value of free AtRGS1 is only slightly changed. 

Similar behavior occurs at GαGDP. However, for the other change detectors components, 

AtRGS1:GαGDP (x4), AtRGS1:GαGTP (x5), GαGTP (x9), and Gβγ (x10), their spike 

behavior vanishes when the irradiance level is reduced and the curves of these components 

significantly changed between SS light (i.e., the steady state for the continuous high 

illumination case) and SS_dark (i.e., the steady state for the constant darkness case). 

Therefore, one of the major functions of free AtRGS1 and GαGDP is light-dark transitions, 

since they instantly react to the change and return to the pre-stimuli level quickly. (B–C) The 

relationship between light intensity and the spike amplitude. The solid black curve is the SS 

dark value for the indicated intensity. The irradiance intensity varied from 0 μEm−2s−1 to 

400 μEm−2s−1 with increment 2 μEm−2s−1. The red dotted line represents the amplitude of 

the spike of free AtRGS1 (left panel) and GαGDP (right panel) induced from light to 

darkness and the blue dashed lines are the inverse amplitude induced upon darkness to light. 

The inserted panels account for the amplitude of these spikes shown for free AtRGS1 and 

GαGDP, where the blue dashed and red dotted curves represent the amplitudes of the first 

and second spikes, respectively. The maximum, minimum, and the steady state for free 

AtRGS1 and GαGDP have a similar profile. The distance between the minimum and steady 

state and the distance between the maximum and steady state are increasing as the irradiance 

intensity is larger than 50 μEm−2s−1 suggesting that free AtRGS1 and GαGDP spikes when 

the irradiance intensity is larger than 50 μEm−2s−1.
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Figure 3. The dynamics of the change detectors for WT under natural settings
(A.) he change detection property for the six components was analyzed for light 

presentations mimicking irradiance intensity that over the time of day (namely, a sine 

function) with different levels of constant cloud cover. The blue shading indicates the 

irradiance duration and each line represents a day with different intensity maxima. During 

this day, the intensity increases the first 8 hours, and decreases the next 8 hours with 

maximal irradiance intensity (MH) at the 8th hour (i.e., noon). Three MH were tested to 

mimic different levels of constant cloud cover: red solid curve, MH= 430 μEm−2s−1; 

magenta dashed lines, MH = 100 μEm−2s−1, and blue dashed-dotted lines, MH = 42 

μEm−2s−1 lines in the first and second rows. Under these natural light profiles, free AtRGS1 

and GαGDP have the most notable spike behavior. (B–D) The frequency of a change in 

irradiance and the intensity of that change affects the dynamics of free AtRGS1. The 

irradiance is for 16 hours followed by darkness another 8 hours. The blue shading in the 

second row indicates how the illumination intensity changed. During the first 8 hours of 

irradiance period, the intensity increased 10 μEm−2s−1 (thick black dotted curve), 20 

μEm−2s−1 (blue dashed-dotted curve), and 30 μEm−2s−1 (red sold curve) every five minutes 

in (B.), every one hour in (C.) and (D), and the intensity is decreased with the same 

frequency for the last 8 hours. During darkness, the light intensity = 0μEm−2s−1 in (B. and 
C.) and 50 μEm−2s−1 in (D). For frequent changes in light intensity (B.), free AtRGS1 only 

spikes at beginning and end of the day (i.e., irradiance duration). However, at less frequent 

light intensity changes (C. and D.), free AtRGS1 spikes at each change throughout the day. 
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Moreover, the spike amplitude of free AtRGS1 is larger at the beginning and ending of the 

day. The light intensity during a night with a full moon does not change the spike feature.
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Figure 4. Dose-duration requirement for shadow detector
(A) Profiles of the amount of free AtRGS1 (x1) after a single illumination for different 

lengths of time. All simulations start with 100 minutes in darkness and then are illuminated 

at 430μEm−2s−1 for 2 min. (black solid black), 4 min. (blue dotted blue), 10 min. (magenta 

dashed) or constantly (red dashed-dotted), as shown by the illumination profiles in the lower 

panel. The spikes associated with the change in light are dose dependent with the full 

amplitude reached by a 10-min pulse. (B) The proportion of internalized AtRGS1 from the 

illumination conditions shown for panel A: 2 min. (black solid black), 4 min. (blue dotted 

blue), 10 min. (magenta dashed) and constant (red dashed-dotted) illumination. (C–D). 
Predictions tested. Hypocotyl epidermal cells expressing AtRGS1-YFP (yellow) with 

chloroplast autofluroescence shown (C) were irradiated at 430 μEm−2s−1 intensity for 2 and 
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10 minutes. (D) AtRGS1 endocytosis. The proportion of internalized AtRGS1-YFP for the 

three cases in Fig. 4C. Each dot represents the result for one seedling. As predicted based on 

the dose and duration properties revealed in panels A and B, a 10-min, but not a 2-min 

irradiation at 430 μEm−2s−1 produced a significant increase in AtRGS1 endocytosis. (E.) 
Simulation of dose-duration requirement. All simulations start with 100 minutes in darkness 

and then are illuminated with sustained irradiance intensity. For all cases, the irradiance 

intensity is varying from 0 to 400 μEm−2s−1 with an increment of 10 μEm−2s−1 (vertical 

axis) and the irradiance pulse duration varying from 0 to 2 hours with an increment of 2 

minutes ( horizontal axis). The heat map shows the maximum of the proportion of 

internalized AtRGS1 for each case, where blue and yellow represent 10% and 80% AtRGS1 

endocytosis, respectively. All cases have a baseline at 10% maximum of AtRGS1 

endocytosis. The contours represent the value of the maximum of AtRGS1 endocytosis from 

15% to 80% with increments of 5%. For the highest intensity (i.e., 400μEm−2s−1), the 

proportion of AtRGS1 endocytosis is significantly increased after 4 minutes stimulation. At 

the lowest intensity (i.e., 42μEm−2s−1), the proportion of AtRGS1 endocytosis is not 

detectable, specifically the change in the internal pool of AtRGS1 is less than the detection 

limits of our technique. For the longest duration (i.e., 2 hours), the proportion of AtRGS1 

endocytosis is significantly increased when the intensity is higher than 50μEm−2s−1.
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Figure 5. System memory. The system motif has memory encoded by kinase 1
These figures show the proportion of AtRGS1 internalization in wild type, kinase 1, and 

kinase 2-minus strains under 100μEm−2s−1 light input. The first row in each figure shows the 

light input that the blue region accounts for light intensity and duration. The second row in 

each figure shows the proportion of AtRGS1 internalization in wild type (sold curve), kinase 

1 minus (dashed curve) strains, and kinase 2-minus (dashed-dotted curve). (A). The AtRGS1 

internalization under sustained 100 μEm−2s−1 light intensity. The steady state amount of 

internalized AtRGS1 in the kinase 1-minus strain is slightly lower. The kinase 2-minus 

model reaches an amount of internalized AtRGS1 that is approximately 50% of wild type. 

(B). The AtRGS1 internalization under light treatment as a sinusoidal input function that 
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reached peak amplitude for 100μEm−2s−1. The wild type, kinase 1-minus, and kinase 2-

minus models exhibited discreet increases and decreases in AtRGS1 internalization during 

light intensity increased period and decreased period, respectively. In the wild type and 

kinase 1-minus models, the internalized AtRGS1 levels are increased following subsequent 

sinusoidal illumination pulses. In contrast, the kinase 2-minus mutant reaches significantly 

reduced AtRGS1 internalization levels. Additionally, only the kinase 2-minus model 

returned to pre-stimulus levels following removal of the illumination. AtRGS1 

internalization peaked at approximately 30% at 100 μEm−2s−1 illumination for the kinase 2-

minus model (magenta arrows), and increased from approximately 32% (blue arrows) for the 

kinase 1-minus model and 40% for wild type (black arrows). Hence, the memory is 

genetically encoded by WNK1 (kinase 2). The return of AtRGS1 to the membrane was 

slightly delayed with respect to the discreet decreases in the light input in the wild type and 

kinase 1-minus models, while return of AtRGS1 to the membrane in the kinase 2minus 

model perfectly aligned with the decreases in the illumination.
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Figure 6. System architecture for change detection property
(A–B). The full model shown in Fig. 1A is condensed to the key elements that impart the 

change detection property. The minimal structure of the light-input model that generates the 

shadow detector property are free AtRGS1 (x1), GαGTP (x9), and Gβγ (x10) and the 

adaptation of free AtRGS1. Components AtRGS1:GαGTP βγ (x3) and AtRGS1:GαGTP (x5) 

are in the inactive cycle (left), GαGTP βγ (x7) and GαGTP (x9) are in the active cycle (right). 

Note that the kinases (kinase 1, x15, and kinase 2, x14 5) and the phosphorylated AtRGS1 

(x11) in Fig. 1 are removed. The marked processes (i)–(iv) represent: (i) the dissociation of 

AtRGS1:GαGTP βγ (x3) to AtRGS1:GαGTP (x5) and Gβγ (x10), (ii) the dissociation of 

AtRGS1:GαGTP (x5) to GαGTP (x9) and internalized AtRGS1 (x12), (iii) the formation of 

AtRGS1:GαGTP (x5) from the association of GαGTP (x9) and free AtRGS1 (x1), and (iv) the 

dissociation of AtRGS1:GαGTP βγ (x3) to free AtRGS1 (x1) and GαGTP βγ (x7). (A). The 

major processes that affect the system behavior during passing of the shadow are indicated 

by (i)–(iii). (B). The major process that affects the system behavior during onset of a shadow 

is indicated by (iv). (C) The dynamics of this reduced system under sustained irradiance 

presentation recapitulates the full model of Fig. 1. The blue region indicates the period when 

the lights are on although at different irradiance intensities where the red solid curve = 430 

μEm−2s−1, the magenta dashed curve = 100 μEm−2s−1, and the blue dotted curve = 42 

μEm−2s−1. When the irradiance intensity is high, free AtRGS1 (x1) spikes at both the dark to 
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light and the light to dark transitions while GαGTP (x9) and Gβγ (x10) spike at the lights on 

transition. When the irradiance intensity is reduced, the spikes of GαGTP and Gβγ are lost; 

only free AtRGS1 spikes albeit with a smaller amplitude. The combination of four processes 

(i)–(iv) generates the spike and adaptation behavior of free AtRGS1. The spike feature of 

GαGTP and Gβγ is generated by the amount of free AtRGS1 and the process (i).
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