1,965 research outputs found

    Variation in syn-subduction sedimentation patterns from inner to outer portions of deep-water fold and thrust belts: examples from the Hikurangi subduction margin of New Zealand

    Get PDF
    The structure and distribution of accommodation in fold and thrust belts vary both laterally and longitudinally. Here we integrate gravity, bathymetry and 2D seismic datasets to investigate the structural and stratigraphic variation in the southern part of the Hikurangi subduction wedge, onshore and offshore North Island, New Zealand. Three morphostructural portions are recognized: The inner portion demonstrates reactivation of inherited structures, producing thick-skinned deformation. Pre-subduction rocks are represented by kilometres of acoustically chaotic seismofacies. Thick-skinned deformation and readily deformable substrate lead to the development of wide trench-slope sub-basins, infilled with >5 km of syn-subduction sediments. The mid portion typically demonstrates thrust faults with connections to deeper structures, leading to the development of an imbricate system with asymmetrical sub-basins typically <5 km thick developed on the back-limb of thrust related folds. An antiformal stack marks the transition from the thick-skinned interior of the basin to the thin-skinned accretionary prism. Beyond this, the relatively non-deformed outer portion demonstrates frontal folds, propagating thrusts and up to 3 km thickness of syn-subduction strata. Structural variation across the subduction wedge controls the generation of accommodation with implications for sediment distribution within fold and thrust belts and for petroleum system development

    An evaluation of Mesozoic rift-related magmatism on the margins of the Labrador Sea: Implications for rifting and passive margin asymmetry

    Get PDF
    The Labrador Sea is a small (∼900 km wide) ocean basin separating southwest Greenland from Labrador, Canada. It opened following a series of rifting events that began as early as the Late Triassic or Jurassic, culminating in a brief period of seafloor spreading commencing by polarity chron 27 (C27; Danian) and ending by C13 (Eocene-Oligocene boundary). Rift-related magmatism has been documented on both conjugate margins of the Labrador Sea. In southwest Greenland this magmatism formed a major coast-parallel dike swarm as well as other smaller dikes and intrusions. Evidence for rift-related magmatism on the conjugate Labrador margin is limited to igneous lithologies found in deep offshore exploration wells, mostly belonging to the Alexis Formation, along with a postulated Early Cretaceous nephelinite dike swarm (ca. 142 Ma) that crops out onshore, near Makkovik, Labrador. Our field observations of this Early Cretaceous nephelinite suite lead us to conclude that the early rift-related magmatism exposed around Makkovik is volumetrically and spatially limited compared to the contemporaneous magmatism on the conjugate southwest Greenland margin. This asymmetry in the spatial extent of the exposed onshore magmatism is consistent with other observations of asymmetry between the conjugate margins of the Labrador Sea, including the total sediment thickness in offshore basins, the crustal structure, and the bathymetric profile of the shelf width. We propose that the magmatic and structural asymmetry observed between these two conjugate margins is consistent with an early rifting phase dominated by simple shear rather than pure shear deformation. In such a setting Labrador would be the lower plate margin to the southwest Greenland upper plate

    Slow Slip Events and Time-Dependent Variations in Locking Beneath Lower Cook Inlet of the Alaska-Aleutian Subduction Zone

    Get PDF
    We identify a series of abrupt changes in GPS site velocities in Lower Cook Inlet, Alaska, in late 2004, early 2010, and late 2011. The site motions during each time period are nearly linear. The surface deformations inferred from GPS for pre-2004 and 2010–2011 are similar to each other, as are 2004–2010 and post-2011. We estimate the slip distribution on the Alaska-Aleutian subduction plate interface accounting for upper plate block rotations and interpret this toggling between two deformation patterns as caused by transient slip. We find that by allowing negative slip deficit rates (i.e., creep rates in excess of relative plate motion), the data in Lower Cook Inlet are fit significantly better during pre-2004 and 2010–2011, suggesting the occurrence of slow slip events (SSEs) there during those time periods. The earlier SSE lasted at least 9 years (observations in that area began in 1995) with Mw ~7.8. The latter SSE had almost the same area as the earlier one and a duration of ~2 years with Mw ~7.2. During 2004–2010 and post-2011, the inversions result in only positive slip deficit rates (i.e., locking) in Lower Cook Inlet. Slip rates are nearly constant during the Lower Cook Inlet SSEs, and the events start and stop abruptly. Both of these properties contrast with observations of SSEs in Upper Cook Inlet and elsewhere. The Lower Cook Inlet SSEs are consistent with previously proposed duration-magnitude scaling laws and demonstrate that slow slip events can last as long as a decade

    Fault Locking, Block Rotation and Crustal Deformation in the Pacific Northwest

    Get PDF
    We interpret Global Positioning System (GPS) measurements in the northwestern United States and adjacent parts of western Canada to describe relative motions of crustal blocks, locking on faults and permanent deformation associated with convergence between the Juan de Fuca and North American plates. To estimate angular velocities of the oceanic Juan de Fuca and Explorer plates and several continental crustal blocks, we invert the GPS velocities together with seafloor spreading rates, earthquake slip vector azimuths and fault slip azimuths and rates. We also determine the degree to which faults are either creeping aseismically or, alternatively, locked on the block-bounding faults. The Cascadia subduction thrust is locked mainly offshore, except in central Oregon, where locking extends inland. Most of Oregon and southwest Washington rotate clockwise relative to North America at rates of 0.4-1.0 ° Myr-1. No shear or extension along the Cascades volcanic arc has occurred at the mm/yr level during the past decade, suggesting that the shear deformation extending northward from the Walker Lane and eastern California shear zone south of Oregon is largely accommodated by block rotation in Oregon. The general agreement of vertical axis rotation rates derived from GPS velocities with those estimated from palaeomagnetic declination anomalies suggests that the rotations have been relatively steady for 10-15 Ma. Additional permanent dextral shear is indicated within the Oregon Coast Range near the coast. Block rotations in the Pacific Northwest do not result in net westward flux of crustal material¿the crust is simply spinning and not escaping. On Vancouver Island, where the convergence obliquity is less than in Oregon and Washington, the contractional strain at the coast is more aligned with Juan de Fuca¿North America motion. GPS velocities are fit significantly better when Vancouver Island and the southern Coast Mountains move relative to North America in a block-like fashion. The relative motions of the Oregon, western Washington and Vancouver Island crustal blocks indicate that the rate of permanent shortening, the type that causes upper plate earthquakes, across the Puget Sound region is 4.4 ± 0.3 mm yr-1. This shortening is likely distributed over several faults but GPS data alone cannot determine the partitioning of slip on them. The transition from predominantly shear deformation within the continent south of the Mendocino Triple Junction to predominantly block rotations north of it is similar to changes in tectonic style at other transitions from shear to subduction. This similarity suggests that crustal block rotations are enhanced in the vicinity of subduction zones possibly due to lower resisting stress

    Should Any Workplace Be Exempt from Smoke-Free Law: The Irish Experience

    Get PDF
    Background. In 2004, the Irish Government introduced national legislation banning smoking in workplaces; with exemptions for “a place of residence”. This paper summarises three Irish studies of exempted premises; prisons, psychiatric hospitals and nursing homes. Methods. PM2.5 and nicotine were measured in nursing homes and psychiatric hospitals, in addition to ultrafine particles in the hospitals. In the prisons, officers (n = 30) completed exhaled breath Carbon Monoxide (CO) measurements. Questionnaires determined officers' opinion on introducing smoking prohibitions in prisons. Nursing home smoking policies were examined and questionnaires completed by staff regarding workplace secondhand smoke (SHS) exposure. Findings. Ultrafine particle concentrations in psychiatric hospitals averaged 130,000  cm3, approximately 45% higher than Dublin pub (35.5 μg/m3) pre ban. PM2.5 levels in psychiatric hospitals (39.5 μg/m3) were similar to Dublin pubs (35.5 μg/m3) pre ban. In nursing homes permitting smoking, similar PM2.5 levels (33 μg/m3) were measured, with nicotine levels (0.57 μg/m3) four times higher than “non-smoking” nursing homes (0.13 μg/m3). In prisons, 44% of non-smoking officers exhibited exhaled breath CO criteria for light to heavy smokers. Conclusions. With SHS exposure levels in some exempted workplaces similar to Dublin pubs levels pre ban, policies ensuring full protection must be developed and implemented as a right for workers, inmates and patients
    corecore