31 research outputs found

    Novel cardioprotective strategies for the uraemic heart.

    Get PDF
    M.D. (Res)Cardiovascular disease is the leading cause of death in patients with underlying chronic kidney disease (CKD). Up to one third of patients presenting with an acute coronary syndrome have CKD stage 3-5. Outcomes following acute myocardial infarction in patients with underlying CKD remain poor. CKD patients are routinely excluded from clinical trials in novel cardioprotective strategies resulting in a paucity of prospective data on which to base guidelines for clinical practice. The aims of this work were to: • Establish and characterise two models of chronic uraemia in rodents: the subtotal nephrectomy model and the adenine diet model. • Determine the effects of underlying chronic uraemia on myocardial ischaemia tolerance. • Examine pharmacological cardioprotective strategies in the context of underlying uraemia using a PARP inhibitor • Investigate the cardioprotective effects of ischaemic conditioning in the context of uraemia. Ischaemic preconditioning and postconditioning protocols were used in both uraemic and non-uraemic animals in a model of acute myocardial infarction. • Preliminary work, using standard molecular biological techniques, was carried out in order to confirm the putative survival pathways responsible for the effect of preconditioning. • Investigate the effect of combining early and late remote ischaemic preconditioning to identify whether summation of these strategies could provide additional tissue protection in a model of acute kidney injury. The results demonstrate that both models develop a uraemic phenotype. Subtotal nephrectomy animals exhibit reduced ischaemia tolerance. PARP inhibition as a pharmacological post conditioning agent was shown to be ineffective at conferring tissue protection, whereas both ischaemic preconditioning and postconditioning were effective cytoprotective strategies in both non-uraemic and uraemic animals. Furthermore, additional benefit was seen when early and late remote preconditioning were summated in a rodent model of acute kidney injury.This work provides a basis for future clinical trials in cardioprotection in the context of underlying CKD

    Finerenone in Predominantly Advanced CKD and Type 2 Diabetes With or Without Sodium-Glucose Cotransporter-2 Inhibitor Therapy

    Get PDF
    INTRODUCTION: FIDELIO-DKD (FInerenone in reducing kiDnEy faiLure and dIsease prOgression in Diabetic Kidney Disease) investigated the nonsteroidal, selective mineralocorticoid receptor (MR) antagonist finerenone in patients with CKD and type 2 diabetes (T2D). This analysis explores the impact of use of sodium-glucose cotransporter-2 inhibitor (SGLT-2i) on the treatment effect of finerenone. METHODS: Patients (N = 5674) with T2D, urine albumin-to-creatinine ratio (UACR) of 30 to 5000 mg/g and estimated glomerular filtration rate (eGFR) of 25 to <75 ml/min per 1.73 m(2) receiving optimized renin-angiotensin system (RAS) blockade were randomized to finerenone or placebo. Endpoints were change in UACR and a composite kidney outcome (time to kidney failure, sustained decrease in eGFR ≥40% from baseline, or renal death) and key secondary cardiovascular outcomes (time to cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure) (ClinicalTrials.gov, NCT02540993). RESULTS: Of 5674 patients, 259 (4.6%) received an SGLT-2i at baseline. Reduction in UACR with finerenone was found with or without use of SGLT-2i at baseline, with ratio of least-squares means of 0.69 (95% CI = 0.66–0.71) and 0.75 (95% CI -= 0.62–0.90), respectively (P(interaction) = 0.31). Finerenone also significantly reduced the kidney and key secondary cardiovascular outcomes versus placebo; there was no clear difference in the results by SGLT-2i use at baseline (P(interaction) = 0.21 and 0.46, respectively) or at any time during the trial. Safety was balanced with or without SGLT-2i use at baseline, with fewer hyperkalemia events with finerenone in the SGLT-2i group (8.1% vs. 18.7% without). CONCLUSION: UACR improvement was observed with finerenone in patients with CKD and T2D already receiving SGLT-2is at baseline, and benefits on kidney and cardiovascular outcomes appear consistent irrespective of use of SGLT-2i

    HEROIC: a 5-year observational cohort study aimed at identifying novel factors that drive diabetic kidney disease: rationale and study protocol

    Get PDF
    Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. INTRODUCTION: Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease worldwide and a major cause of premature mortality in diabetes mellitus (DM). While improvements in care have reduced the incidence of kidney disease among those with DM, the increasing prevalence of DM means that the number of patients worldwide with DKD is increasing. Improved understanding of the biology of DKD and identification of novel therapeutic targets may lead to new treatments. A major challenge to progress has been the heterogeneity of the DKD phenotype and renal progression. To investigate the heterogeneity of DKD we have set up The East and North London Diabetes Cohort (HEROIC) Study, a secondary care-based, multiethnic observational study of patients with biopsy-proven DKD. Our primary objective is to identify histological features of DKD associated with kidney endpoints in a cohort of patients diagnosed with type 1 and type 2 DM, proteinuria and kidney impairment. METHODS AND ANALYSIS: HEROIC is a longitudinal observational study that aims to recruit 500 patients with DKD at high-risk of renal and cardiovascular events. Demographic, clinical and laboratory data will be collected and assessed annually for 5 years. Renal biopsy tissue will be collected and archived at recruitment. Blood and urine samples will be collected at baseline and during annual follow-up visits. Measured glomerular filtration rate (GFR), echocardiography, retinal optical coherence tomography angiography and kidney and cardiac MRI will be performed at baseline and twice more during follow-up. The study is 90% powered to detect an association between key histological and imaging parameters and a composite of death, renal replacement therapy or a 30% decline in estimated GFR. ETHICS AND DISSEMINATION: Ethical approval has been obtained from the Bloomsbury Research Ethics Committee (REC 18-LO-1921). Any patient identifiable data will be stored on a password-protected National Health Services N3 network with full audit trail. Anonymised imaging data will be stored in a ISO27001-certificated data warehouse.Results will be reported through peer-reviewed manuscripts and conferences and disseminated to participants, patients and the public using web-based and social media engagement tools as well as through public events

    Severity of COVID-19 after Vaccination among Hemodialysis Patients: An Observational Cohort Study

    Get PDF
    Background and objectives: Patients receiving hemodialysis are at high risk from coronavirus disease 2019 (COVID-19) and demonstrate impaired immune responses to vaccines. There have been several descriptions of their immunologic responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination, but few studies have described the clinical efficacy of vaccination in patients on hemodialysis. // Design, setting, participants, & measurements: In a multicenter observational study of the London hemodialysis population undergoing surveillance PCR testing during the period of vaccine rollout with BNT162b2 and AZD1222, all of those positive for SARS-CoV-2 were identified. Clinical outcomes were analyzed according to predictor variables, including vaccination status, using a mixed effects logistic regression model. Risk of infection was analyzed in a subgroup of the base population using a Cox proportional hazards model with vaccination status as a time-varying covariate. // Results: SARS-CoV-2 infection was identified in 1323 patients of different ethnicities (Asian/other, 30%; Black, 38%; and White, 32%), including 1047 (79%) unvaccinated, 86 (7%) after first-dose vaccination, and 190 (14%) after second-dose vaccination. The majority of patients had a mild course; however, 515 (39%) were hospitalized, and 172 (13%) died. Older age, diabetes, and immune suppression were associated with greater illness severity. In regression models adjusted for age, comorbidity, and time period, prior two-dose vaccination was associated with a 75% (95% confidence interval, 56 to 86) lower risk of admission and 88% (95% confidence interval, 70 to 95) fewer deaths compared with unvaccinated patients. No loss of protection was seen in patients over 65 years or with increasing time since vaccination, and no difference was seen between vaccine types. // Conclusions: These data demonstrate a substantially lower risk of severe COVID-19 after vaccination in patients on dialysis who become infected with SARS-CoV-2

    Evaluating the effect of a digital health intervention to enhance physical activity in people with chronic kidney disease (Kidney BEAM): a multicentre, randomised controlled trial in the UK

    Get PDF
    BACKGROUND: Remote digital health interventions to enhance physical activity provide a potential solution to improve the sedentary behaviour, physical inactivity, and poor health-related quality of life that are typical of chronic conditions, particularly for people with chronic kidney disease. However, there is a need for high-quality evidence to support implementation in clinical practice. The Kidney BEAM trial evaluated the clinical effect of a 12-week physical activity digital health intervention on health-related quality of life. METHODS: In a single-blind, randomised controlled trial conducted at 11 centres in the UK, adult participants (aged ≥18 years) with chronic kidney disease were recruited and randomly assigned (1:1) to the Kidney BEAM physical activity digital health intervention or a waiting list control group. Randomisation was performed with a web-based system, in randomly permuted blocks of six. Outcome assessors were masked to treatment allocation. The primary outcome was the difference in the Kidney Disease Quality of Life Short Form version 1.3 Mental Component Summary (KDQoL-SF1.3 MCS) between baseline and 12 weeks. The trial was powered to detect a clinically meaningful difference of 3 arbitrary units (AU) in KDQoL-SF1.3 MCS. Outcomes were analysed by an intention-to-treat approach using an analysis of covariance model, with baseline measures and age as covariates. The trial was registered with ClinicalTrials.gov, NCT04872933. FINDINGS: Between May 6, 2021, and Oct 30, 2022, 1102 individuals were assessed for eligibility, of whom 340 participants were enrolled and randomly assigned to the Kidney BEAM intervention group (n=173) or the waiting list control group (n=167). 268 participants completed the trial (112 in the Kidney BEAM group and 156 in the waiting list control group). All 340 randomly assigned participants were included in the intention-to treat population. At 12 weeks, there was a significant improvement in KDQoL-SF.13 MCS score in the Kidney BEAM group (from mean 44·6 AU [SD 10·8] at baseline to 47·0 AU [10·6] at 12 weeks) compared with the waiting list control group (from 46·1 AU [10·5] to 45·0 AU [10·1]; between-group difference of 3·1 AU [95% CI 1·8-4·4]; p<0·0001). INTERPRETATION: The Kidney BEAM physical activity platform is an efficacious digital health intervention to improve mental health-related quality of life in patients with chronic kidney disease. These findings could facilitate the incorporation of remote digital health interventions into clinical practice and offer a potential intervention worthy of investigation in other chronic conditions. FUNDING: Kidney Research UK

    The development and internal pilot trial of a digital physical activity and emotional well-being intervention (Kidney BEAM) for people with chronic kidney disease

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2023-09-15, registration 2023-12-20, accepted 2023-12-20, epub 2024-01-06, online 2024-01-06, collection 2024-12Acknowledgements: The authors acknowledge the work of the various research teams at each site and thank all the participants involved in this research. This research was prospectively registered NCT04872933.Publication status: PublishedPelagia Koufaki - ORCID: 0000-0002-1406-3729 https://orcid.org/0000-0002-1406-3729This trial assessed the feasibility and acceptability of Kidney BEAM, a physical activity and emotional well-being self-management digital health intervention (DHI) for people with chronic kidney disease (CKD), which offers live and on-demand physical activity sessions, educational blogs and videos, and peer support. In this mixed-methods, multicentre randomised waitlist-controlled internal pilot, adults with established CKD were recruited from five NHS hospitals and randomised 1:1 to Kidney BEAM or waitlist control. Feasibility outcomes were based upon a priori progression criteria. Acceptability was primarily explored via individual semi-structured interviews (n = 15). Of 763 individuals screened, n = 519 (68%, 95% CI 65 to 71%) were eligible. Of those eligible, n = 303 (58%, 95% CI 54–63%) did not respond to an invitation to participate by the end of the pilot period. Of the 216 responders, 50 (23%, 95% CI 18–29%) consented. Of the 42 randomised, n = 22 (10 (45%) male; 49 ± 16 years; 14 (64%) White British) were allocated to Kidney BEAM and n = 20 (12 (55%) male; 56 ± 11 years; 15 (68%) White British) to the waitlist control group. Overall, n = 15 (30%, 95% CI 18–45%) withdrew during the pilot phase. Participants completed a median of 14 (IQR 5–21) sessions. At baseline, 90–100% of outcome data (patient reported outcome measures and a remotely conducted physical function test) were completed and 62–83% completed at 12 weeks follow-up. Interview data revealed that remote trial procedures were acceptable. Participants’ reported that Kidney BEAM increased their opportunity and motivation to be physically active, however, lack of time remained an ongoing barrier to engagement with the DHI. An randomised controlled trial of Kidney BEAM is feasible and acceptable, with adaptations to increase recruitment, retention and engagement. Trial registration NCT04872933. Date of first registration 05/05/2021.This trial was funded by a grant from Kidney Research UK. Funding for Kidney Beam is currently supported by the four major UK charities: Kidney Research UK, Kidney Care UK, National Kidney Federation and the UK Kidney Association. HMLY is funded by the NIHR [NIHR302926]. Part of this research was carried out at the National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre (BRC). The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care. The funders had no role in the design, collection, analysis, interpretation of the data, or writing of this protocol.pubpu

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Glycaemic Control Impact on Renal Endpoints in Diabetic Patients on Haemodialysis

    No full text
    Objective. To identify the number of haemodialysis patients with diabetes in a large NHS Trust, their current glycaemic control, and the impact on other renal specific outcomes. Design. Retrospective, observational, cross-sectional study. Methods. Data was collected from an electronic patient management system. Glycaemic control was assessed from HbA1c results that were then further adjusted for albumin (Alb) and haemoglobin (Hb). Interdialytic weight gains were analysed from weights recorded before and after dialysis, 2 weeks before and after the most recent HbA1c date. Amputations were identified from electronic records. Results. 39% of patients had poor glycaemic control (HbA1c > 8%). Adjusted HbA1c resulted in a greater number of patients with poor control (55%). Significant correlations were found with interdialytic weight gains (P<0.02, r=0.14), predialysis sodium (P<0.0001, r=-1.9), and predialysis bicarbonate (P<0.02, r=0.12). Trends were observed with albumin and C-reactive protein. Patients with diabetes had more amputations (24 versus 2). Conclusion. Large number of diabetic patients on haemdialysis have poor glycaemic control. This may lead to higher interdialytic weight gains, larger sodium and bicarbonate shifts, increased number of amputations, and possibly increased inflammation and decreased nutritional status. Comprehensive guidelines and more accurate long-term tests for glycaemic control are needed

    Glycaemic Control Impact on Renal Endpoints in Diabetic Patients on Haemodialysis

    No full text
    Objective. To identify the number of haemodialysis patients with diabetes in a large NHS Trust, their current glycaemic control, and the impact on other renal specific outcomes. Design. Retrospective, observational, cross-sectional study. Methods. Data was collected from an electronic patient management system. Glycaemic control was assessed from HbA1c results that were then further adjusted for albumin (Alb) and haemoglobin (Hb). Interdialytic weight gains were analysed from weights recorded before and after dialysis, 2 weeks before and after the most recent HbA1c date. Amputations were identified from electronic records. Results. 39% of patients had poor glycaemic control (HbA1c &gt; 8%). Adjusted HbA1c resulted in a greater number of patients with poor control (55%). Significant correlations were found with interdialytic weight gains ( &lt; 0.02, = 0.14), predialysis sodium ( &lt; 0.0001, = −1.9), and predialysis bicarbonate ( &lt; 0.02, = 0.12). Trends were observed with albumin and C-reactive protein. Patients with diabetes had more amputations (24 versus 2). Conclusion. Large number of diabetic patients on haemdialysis have poor glycaemic control. This may lead to higher interdialytic weight gains, larger sodium and bicarbonate shifts, increased number of amputations, and possibly increased inflammation and decreased nutritional status. Comprehensive guidelines and more accurate long-term tests for glycaemic control are needed

    The challenge of translating ischemic conditioning from animal models to humans: the role of comorbidities

    No full text
    Following a period of ischemia (local restriction of blood supply to a tissue), the restoration of blood supply to the affected area causes significant tissue damage. This is known as ischemia-reperfusion injury (IRI) and is a central pathological mechanism contributing to many common disease states. The medical complications caused by IRI in individuals with cerebrovascular or heart disease are a leading cause of death in developed countries. IRI is also of crucial importance in fields as diverse as solid organ transplantation, acute kidney injury and following major surgery, where post-operative organ dysfunction is a major cause of morbidity and mortality. Given its clinical impact, novel interventions are urgently needed to minimize the effects of IRI, not least to save lives but also to reduce healthcare costs. In this Review, we examine the experimental technique of ischemic conditioning, which entails exposing organs or tissues to brief sub-lethal episodes of ischemia and reperfusion, before, during or after a lethal ischemic insult. This approach has been found to confer profound tissue protection against IRI. We discuss the translation of ischemic conditioning strategies from bench to bedside, and highlight where transition into human clinical studies has been less successful than in animal models, reviewing potential reasons for this. We explore the challenges that preclude more extensive clinical translation of these strategies and emphasize the role that underlying comorbidities have in altering the efficacy of these strategies in improving patient outcomes
    corecore