3,222 research outputs found
Development and application of operational techniques for the inventory and monitoring of resources and uses for the Texas coastal zone
The author has identified the following significant results. The most significant ADP result was the modification of the DAM package to produce classified printouts, scaled and registered to U.S.G.S., 71/2 minute topographic maps from LARSYS-type classification files. With this modification, all the powerful scaling and registration capabilities of DAM become available for multiclass classification files. The most significant results with respect to image interpretation were the application of mapping techniques to a new, more complex area, and the refinement of an image interpretation procedure which should yield the best results
On the Nature of Precursors in the Radio Pulsar Profiles
In the average profiles of several radio pulsars, the main pulse is
accompanied by the preceding component. This so called precursor is known for
its distinctive polarization, spectral, and fluctuation properties. Recent
single-pulse observations hint that the sporadic activity at the extreme
leading edge of the pulse may be prevalent in pulsars. We for the first time
propose a physical mechanism of this phenomenon. It is based on the induced
scattering of the main pulse radiation into the background. We show that the
scattered component is directed approximately along the ambient magnetic field
and, because of rotational aberration in the scattering region, appears in the
pulse profile as a precursor to the main pulse. Our model naturally explains
high linear polarization of the precursor emission, its spectral and
fluctuation peculiarities as well as suggests a specific connection between the
precursor and the main pulse at widely spaced frequencies. This is believed to
stimulate multifrequency single-pulse studies of intensity modulation in
different pulsars.Comment: 5 pages, no figures. Accepted for publication in MNRAS Letter
Landau-Zener sweeps and sudden quenches in coupled Bose-Hubbard chains
We simulate numerically the dynamics of strongly correlated bosons in a
two-leg ladder subject to a time-dependent energy bias between the two chains.
When all atoms are initially in the leg with higher energy, we find a drastic
reduction of the inter-chain particle transfer for slow linear sweeps, in
quantitative agreement with recent experiments. This effect is preceded by a
rapid broadening of the quasi-momentum distribution of atoms, signaling the
presence of a bath of low-energy excitations in the chains. We further
investigate the scenario of quantum quenches to fixed values of the energy
bias. We find that for large enough density the momentum distribution relaxes
to that of an equilibrium thermal state with the same energy.Comment: 6 pages, 4 figure
The quadratic spinor Lagrangian, axial torsion current, and generalizations
We show that the Einstein-Hilbert, the Einstein-Palatini, and the Holst
actions can be derived from the Quadratic Spinor Lagrangian (QSL), when the
three classes of Dirac spinor fields, under Lounesto spinor field
classification, are considered. To each one of these classes, there corresponds
a unique kind of action for a covariant gravity theory. In other words, it is
shown to exist a one-to-one correspondence between the three classes of
non-equivalent solutions of the Dirac equation, and Einstein-Hilbert,
Einstein-Palatini, and Holst actions. Furthermore, it arises naturally, from
Lounesto spinor field classification, that any other class of spinor field
(Weyl, Majorana, flagpole, or flag-dipole spinor fields) yields a trivial
(zero) QSL, up to a boundary term. To investigate this boundary term we do not
impose any constraint on the Dirac spinor field, and consequently we obtain new
terms in the boundary component of the QSL. In the particular case of a
teleparallel connection, an axial torsion 1-form current density is obtained.
New terms are also obtained in the corresponding Hamiltonian formalism. We then
discuss how these new terms could shed new light on more general
investigations.Comment: 9 pages, RevTeX, to be published in Int.J.Mod.Phys.D (2007
From density-matrix renormalization group to matrix product states
In this paper we give an introduction to the numerical density matrix
renormalization group (DMRG) algorithm, from the perspective of the more
general matrix product state (MPS) formulation. We cover in detail the
differences between the original DMRG formulation and the MPS approach,
demonstrating the additional flexibility that arises from constructing both the
wavefunction and the Hamiltonian in MPS form. We also show how to make use of
global symmetries, for both the Abelian and non-Abelian cases.Comment: Numerous small changes and clarifications, added a figur
CYTOLOGICAL EVIDENCE FOR A RELATIONSHIP BETWEEN NORMAL HEMATOPOIETIC COLONY-FORMING CELLS AND CELLS OF THE LYMPHOID SYSTEM
The relationship between hematopoietic colony-forming stem cells and cells in the thymus and lymph nodes of unirradiated mice has been investigated using a chromosome-marker technique. It was found that a high proportion of cells in the thymus may belong to the same clone as normal hematopoietic colony-forming cells. It was also found that cells belonging to the same clone as colony-forming cells may reach the lymph nodes, and that nodes containing such cells can participate in an immunological response against sheep red cells. Either the precursors of cells in thymus and lymph node are identical with hematopoietic colony-forming cells, or they are both descendants of a common precursor which has not yet been identified. The results are compatible with the view that cells of the hematopoietic system and the immune system may be derived from the same stem cell
- …