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We simulate numerically the dynamics of strongly correlated bosons in a two-leg ladder subject to a

time-dependent energy bias between the two chains. When all atoms are initially in the leg with higher

energy, we find a drastic reduction of the interchain particle transfer for slow linear sweeps, in quantitative

agreement with recent experiments. This effect is preceded by a rapid broadening of the quasimomentum

distribution of atoms, signaling the presence of a bath of low-energy excitations in the chains. We further

investigate the scenario of quantum quenches to fixed values of the energy bias. We find that for a large

enough density the momentum distribution relaxes to that of an equilibrium thermal state with the

same energy.

DOI: 10.1103/PhysRevLett.106.155302 PACS numbers: 67.85.�d, 05.70.Ln, 37.10.Jk

The investigation of dynamical phenomena in quantum
many-body systems provides an efficient way to probe the
physical properties of the underlying ensemble and to
tackle fundamental questions of statistical mechanics. Of
special interest in this regard is how the quantum dynamics
of two coupled modes is changed in a many-body setting
[1–4] and how a closed quantum system far from equilib-
rium does or does not equilibrate (see Refs. [5–8] and
references therein). The high degree of control achieved
in current experiments with ultracold atoms in optical
lattices [9] allows for clean and quantitative studies of
quantum many-body dynamics [10–16]. Recently, a gen-
eralization of the famous Landau-Zener (LZ) sweep [17]
to a pair of coupled one-dimensional quantum gases of
strongly correlated bosonic particles was addressed experi-
mentally [18]. One intriguing result of this experiment was
the observation of a breakdown of adiabatic interchain
transfer in slow sweeps of the interchain bias.

In this Letter, we present a numerically exact study of
the LZ dynamics in two coupled Bose-Hubbard chains
subject to a time-dependent interchain bias energy, using
the time-dependent density matrix renormalization group
(t-DMRG) method [19]. We show that the breakdown of
adiabatic transfer as observed in Ref. [18] in slow sweeps
far away from the ground state is always accompanied by
a dramatic broadening of the quasimomentum distribution
of atoms in the two legs. This provides strong evidence
that the responsible mechanism for the breakdown is the
coupling to an internal bath of low-energy momentum
excitations. Finally, we study the quantum dynamics
emerging after sudden quenches of the bias energy where
the same mechanism causes a relaxation to a steady state

similar to an equilibrium thermal state with the same
energy.
Setup and model.—We consider a two-leg ladder formed

by two coupled Bose-Hubbard chains [see Fig. 1(a)] de-
scribed by the Hamiltonian

ĤðtÞ ¼ �
�
J
X
i

b̂yi;Lb̂i;R þ Jk
X
i;�

b̂yi;�b̂iþ1;�

�
þ H:c:

þU

2

X
i;�

n̂i;�ðn̂i;� � 1Þ þ�ðtÞX
i

n̂i;R; (1)

where b̂i;� (i ¼ 1 . . .Ls, � ¼ L, R) are the local annihila-

tion operators and n̂i;� ¼ b̂yi;�b̂i;�. The parameters Jk and J
are the intrachain and interchain tunnel couplings, respec-
tively, U is the on-site interaction energy, and �ðtÞ is
a time-dependent energy bias between the two chains.
In the following we fix J ¼ @ ¼ 1 and we call n ¼ N=Ls

the density of the system with N ¼ P
i;�hn̂i;�i. The zero-

temperature properties of the model (1) have been
investigated recently using static DMRG and mean-field
methods [20].
We initialize the system in the ground state of

Hamiltonian Eq. (1) with a large positive bias �ðt ¼ 0Þ !
þ1 so that all particles are initially located in the left leg.
This ground state is found from a static DMRG calculation.
We distinguish two different scenarios for the timedepend-
ence of the bias �ðtÞ:

�ðt > 0Þ ¼
�
�0 þ �t; ðlinear sweepÞ
�f; ðsudden quenchÞ: (2)

The first case corresponds to a linear LZ sweep�0 ! ��0

of the bias with constant rate � ¼ �2�0=T, T being the
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sweep time. The second case amounts to a sudden change
(quench) of the bias to a constant value �f. We use

t-DMRG [19] to calculate the exact quantum dynamics
in both situations for system sizes up to Ls ¼ 16. In all the
simulations we fix the truncation error to " ¼ 10�4 and
check that all results have converged.

Linear sweeps.—We first discuss LZ sweeps of the
energy bias, focusing on inverse sweeps, where the left
leg is initially higher in potential energy than the right leg
(�0 < 0, �> 0). The corresponding counterpart we call a
ground-state sweep (�0 > 0, �< 0). In the limit Ls ¼ 1
and U ¼ Jk ¼ 0, the problem reduces to the original two-

level LZ problem [17], where the probability to reach
the right leg as a function of the sweep rate pLZð�Þ ¼
1� expð�2�=�Þ is the same for both.

We consider the fraction nRðtÞ ¼ N�1
P

ihn̂i;RðtÞi of par-
ticles in the right leg at a given time t. This is plotted in
Fig. 1(b) for both types of sweeps and three absolute values
of the sweep rate �. In Fig. 1(c), we plot the final transfer
efficiency nRðTÞ reached at the end of the inverse sweep as
obtained from a number of such traces with varying sweep
rates [21]. We compare the results for n ¼ 0:75, 1, 1.25 to
experimental data taken from Ref. [18] for the respective
set of Hamiltonian parameters [21]. In the experiments,

the effective density was significantly higher as will be
discussed in detail below.
For fast sweeps, corresponding to j�j=2� � U; Jk, the

curves for the ground state and for the inverse sweep lie on
top of each other [Figure 1(b)-i]. This is due to the fact that
practically no intrachain process can occur during the
sweep and hence the problem is effectively reduced to
the original two-level LZ problem. As a consequence the
DMRG results in Fig. 1(c) collapse onto pLZð�Þ for small
values of 2�=�.
Differences between the two kinds of sweeps become

evident as � decreases and intrachain processes start to
affect the dynamics. Here, we find the transfer efficiency
for the inverse sweeps to be reduced relative to the ground-
state sweep [Fig. 1(b)-ii]. This can in parts be understood in
the limit of isolated double wells filled with interacting
particles (Jk ¼ 0, U > 0). Here, the dynamical problem

can easily be solved numerically by direct integration of
the Schrödinger equation and even analytically when as-
suming U � 1 [4,18]. The analysis of this scenario shows
that with an increasing number of particles the transfer
efficiency is enhanced in the ground-state sweep, while it is
reduced in the inverse sweep [21].
For slow enough sweeps, corresponding to j�j=2� &

minðU; JkÞ, the transfer efficiency for the inverse sweep

starts to decrease as the rate � decreases, as was found in
Ref. [18]. This is in sharp contrast to the behavior for the
ground-state sweep, where the transfer efficiency ap-
proaches unity [Fig. 1(b)-iii]. We emphasize that the break-
down of adiabaticity in the inverse sweep cannot be
obtained within the isolated double-well picture and is
directly related to the possibility for the system to generate
excitations along the chains. Since these excitations have
to be created via collisions, the breakdown is more effec-
tive in systems with higher densities, as it is evident in
Fig. 1(c). Eventually, for infinitely slow sweeps (� ! 0)
we expect the transfer efficiency to rise to 1 again due to
the finiteness of the system.
We note, that the experimental results taken for com-

parison were obtained from a two-dimensional array of
pairwise coupled chains with inhomogeneous density [18].
In each of these ladders the maximum fidelity is reached
for different sweep rates and takes different values.
Therefore, the maximum in nRðTÞ is less pronounced
than in the numerical results for a single ladder. From
ground-state DMRG calculations respecting the experi-
mental geometry, we found that the average density in
the center of the chains was hnðz ¼ 0Þiav ’ 2, whereas
the overall average density was hniav ’ 1:4. A rapid growth
in entanglement entropy [22,23] prevents us from access-
ing the dynamics with such high densities—or of the full
inhomogeneous system—directly in the simulations. In the
inset of Fig. 1(c) we plot the maximum efficiency nR;max

reached in the DMRG simulations as a function of n and
for Ls ¼ 8, 12. We find nR;max to depend approximately

linearly on n and only weakly on Ls. Linear extrapolation
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FIG. 1 (color online). (a) Sketch of the two-leg ladder de-
scribed by the Hamiltonian Eq. (1). (b) Instantaneous right-leg
population nRðtÞ during ground-state (dashed lines) and inverse
sweeps (solid lines) with various rates �, calculated with n ¼
0:75 and Ls ¼ 8. The Hamiltonian parameters are j�0j ¼ 18:2,
Jk ¼ 0:38, and U ¼ 1:58 [21]. (c) Transfer efficiency

nRðT; 2�=�Þ for inverse sweeps with the same parameters and
n ¼ 0:75, 1, 1.25 (solid lines). The dashed line is the two-level
LZ probability pLZð�Þ. The circles represent experimental data
taken from Ref. [18] for the corresponding set of control pa-
rameters [21]. The inset shows the maximum transfer efficiency
as a function of the density for Ls ¼ 8 (open circles) and 12
(filled circles) and the linear extrapolation to higher densities
(dashed line and solid line, respectively). The blue horizontal
line marks the maximum reached in the experiment.
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of our numerical results for nR;max to higher densities yields

a crossing with the experimentally measured value at
n ’ 1:8.

Having recovered the downturn of the transfer efficiency
observed in the experiments, we now turn to the discussion
of the experimentally accessible quasimomentum distribu-

tion of atoms in both legs [9]. The latter is defined as nk� ¼
L�1

P
m;se

�ikðm�sÞhbym�bs�i, where the sum extends to all

lattice sites and k is given in units of the reciprocal lattice
constant. In Fig. 2(a), we show nk� for the left and the right
leg as a function of 2�=� and k and their respective widths
in Fig. 2(b).

For very fast sweeps, the left- and right-leg distributions
are equal up to a constant factor and therefore have equal
widths. Since intrachain processes are absent on this time
scale, each individual Bloch state undergoes a separate
two-level LZ transition. Therefore, the momentum distri-
bution in the right leg reduces to nkR ¼ pLZð�ÞnkLðt ¼ 0Þ.
As the sweep rate decreases, the distributions of both legs
show a completely different behavior. In the left leg, the
peak around k ¼ 0 is more and more depleted, whereas
new local maxima emerge near k ¼ ��, signaling that the
motion of atoms on neighboring sites in the chains be-
comes correlated. The width hk2iL of the quasimomentum
distribution grows correspondingly, reaching a maximum
value shortly before the transfer efficiency becomes maxi-
mal (dashed vertical line).

For even slower sweeps, the peaks at k ¼ �� in the left
leg spread out and make the quasimomentum distribution
appear more uniform. This, together with a counterflow of
low-momentum components from the right to the left leg,
causes the width hk2iL to decrease. The quasimomentum
distribution of the right leg, in contrast, shows the conden-

sate peak at k ¼ 0 but the peaks at the edge of the Brillouin
zone are almost absent. The associated width hk2iR in-
creases about linearly for the full range of values 2�=�
covered by our simulations. These results provide numeri-
cal evidence for the coupling to low-energy momentum
modes being the responsible mechanism for the breakdown
of adiabaticity in the inverse sweeps.
Quantum quenches.—A more detailed ‘‘stroboscopic’’

understanding of this decay mechanism can be obtained
from the quantum quenches denoted by the second case
in Eq. (2). Since the Hamiltonian is time independent for
t > 0, the energy E of the system is a constant of motion
throughout the subsequent time-evolution. In Figs. 3(a) and
3(b), we plot the instantaneous values of the fraction nRðtÞ
of particles and the width of the right-leg quasimomentum
distribution hk2iRðtÞ, respectively, for three different values
of the bias �f where the system is again initialized with �i

large and positive. Both observables show oscillations
which dampen out towards a nonzero value which depends
on �f.

In Fig. 3(c), we plot the longtime value of the right-leg
population nR � nRðt ! 1Þ as obtained from the time
traces for different values of �f. The dots and the error

bars represent, respectively, the average value and the
amplitude of the last oscillation that we simulate numeri-
cally [21]. As the bias �f crosses zero and becomes

negative, nR reaches a maximum value slightly above 0.5
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FIG. 2 (color online). Broadening of the left- and right-leg
momentum distributions during the inverse sweep:
(a) Quasimomentum distributions nk� of the left and the right
leg as a function of the reduced sweep time 2�=� as obtained
from DMRG for n ¼ 0:75 and Ls ¼ 16. The arrows mark peaks
in the momentum distributions at k ¼ �� which appear for
2�=�> 1. (b) The corresponding quasimomentum width hk2i�
of both legs (filled symbols) plotted together with the results for
Ls ¼ 8 (open symbols) where slower sweeps are accessible. The
dashed vertical line marks the sweep rate for which nR reaches
its maximum [see Fig. 1(c)]. The Hamiltonian parameters are the
same as for Fig. 1.
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FIG. 3 (color online). Quantum dynamics after a sudden
quench: (a) Time traces of the right-leg density nRðtÞ and
(b) the width hk2iR of the momentum distribution in the right
leg for n ¼ 1:5 and different values of�f. (c) Longtime value nR
of the right-leg density versus �f (n ¼ 1:5). Points and error

bars refer to the time-averaged value and amplitude of the last
oscillation, respectively [21]. The solid line denotes the right-leg
population as obtained for an interacting thermal Bose gas with
the same total energy as the initial state in the quenches. The
dashed line is the prediction for an ideal Bose gas. The shaded
area indicates �f � �4Jk. The inset shows the inverse tempera-

tures used in the finite-temperature calculations. (d) Longtime
value of the width of the momentum distribution versus detuning
for various densities (circles). The solid and dashed lines are the
results of the finite-temperature calculations as in (b). For all
plots, the size of the system is Ls ¼ 16 and the Hamiltonian
parameters are as in Fig. 1.
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and then decreases. Any loss of potential energy due to the
transfer of atoms to the empty chain must be counterbal-
anced by an equal increase in kinetic energy. Since this
condition can hardly be satisfied when the detuning is large
and negative, more and more atoms remain self-trapped in
the left well (shaded region).

For comparison, we performed static DMRG simula-
tions for an interacting Bose gas on the two-leg ladder
with bias �f at thermal equilibrium. We chose the tem-

perature in these simulations such that the total energy
matches with the conserved energy E in the quench. The
respective results for nR [solid line in Fig. 3(c)] are in very
good agreement with the longtime values of the dynamical
evolution. On the other hand, the same calculation for an
ideal Bose gas with E ¼ �2JknLs (dashed line) shows

significant discrepancies, indicating the crucial importance
of interactions. The inverse (effective) temperatures �
found from the matching condition are plotted as an inset
in Fig. 3(c). At the point �f ¼ �4Jk, � becomes zero

irrespective of the density or the interaction strength. This
implies that quantum quenches with �f <�4Jk cannot be
associated with an equilibrium thermal state with a finite
positive temperature.

In Fig. 3(d) we plot the longtime value of the width hk2iR
of the right-leg quasimomentum distribution as a function
of �f and for different densities. Within our numerical

accuracy, the quasimomentum widths in the left and in the
right legs coincide for long times, unless �f <�4Jk,
where the dynamics are found to be extremely slow. We
again compare the longtime values with the results of the
finite-temperature DMRG calculation and find good agree-
ment for the largest density (n ¼ 1:5), especially away
from �f ¼ 0. For lower densities, and closer to �f ¼ 0,

we observe a less pronounced broadening of the momen-
tum distribution. Here, collisions are much less effective
and a complete equilibration cannot be reached before
finite-size effects become important [21]. At �f ¼ �4Jk,
where the effective temperature diverges, the momentum
distribution is flat, corresponding to hk2i ¼ �2=3 for any
finite density.

Together with the equilibration of right-leg density, our
findings suggest that the system relaxes towards an equi-
librium state close to the Gibbs ensemble associated with
the initial state’s particle number and total energy. The
responsible decay mechanism is the same that leads to
the breakdown of adiabaticity and the accompanying
broadening of the momentum distribution for slow inverse
LZ sweeps.

In conclusion, we have studied numerically both LZ
sweeps and quenches in a two-leg ladder system of
strongly interacting bosons. For inverse sweeps, we have
recovered the breakdown of the adiabatic transfer of par-
ticles to the initially unoccupied right leg as it was recently
found in experiments [18]. We have shown that this

phenomenon is preceded and accompanied by a fast broad-
ening of the momentum distribution of the initially filled
left leg, providing numerical evidence for the coupling to
an inner bath of low-energy momentum excitations.
Finally, we have investigated the underlying decay mecha-
nism by studying quantum quenches of the energy bias.
We have found strong evidence for the system to approach
a thermal state whose temperature is set by the bias. Our
findings provide detailed insight into the dynamics of
strongly correlated quantum many-body systems in low
dimensions which can be probed in current experiments
with ultracold atoms.
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