14 research outputs found

    Lorem Ipsum Paris

    No full text

    Recruitment and loading of the E1 initiator protein: an ATP-dependent process catalysed by a transcription factor.

    No full text
    Initiation of DNA replication critically depends on ori recognition as well as on catalytic activities of the initiator complex. For replication of papillomaviruses the catalytic activities for initiation are provided by the E1 protein. Here, we show that the transcription factor E2 acts to assemble E1 into a complex active for ori distortion in two steps. First, cooperative DNA binding of E1 and E2 generates a sequence-specific ori recognition complex. In the second ATP-dependent step, E2 is displaced and additional E1 molecules are incorporated. The net result is a final complex with low sequence specificity deposited onto a specific sequence in the DNA. This may be a general strategy to accomplish specific positioning of protein complexes with low sequence specificity

    Evolution of sensory complexity recorded in a myxobacterial genome

    Get PDF
    Myxobacteria are single-celled, but social, eubacterial predators. Upon starvation they build multicellular fruiting bodies using a developmental program that progressively changes the pattern of cell movement and the repertoire of genes expressed. Development terminates with spore differentiation and is coordinated by both diffusible and cell-bound signals. The growth and development of Myxococcus xanthus is regulated by the integration of multiple signals from outside the cells with physiological signals from within. A collection of M. xanthus cells behaves, in many respects, like a multicellular organism. For these reasons M. xanthus offers unparalleled access to a regulatory network that controls development and that organizes cell movement on surfaces. The genome of M. xanthus is large (9.14 Mb), considerably larger than the other sequenced δ-proteobacteria. We suggest that gene duplication and divergence were major contributors to genomic expansion from its progenitor. More than 1,500 duplications specific to the myxobacterial lineage were identified, representing >15% of the total genes. Genes were not duplicated at random; rather, genes for cell–cell signaling, small molecule sensing, and integrative transcription control were amplified selectively. Families of genes encoding the production of secondary metabolites are overrepresented in the genome but may have been received by horizontal gene transfer and are likely to be important for predation
    corecore