251 research outputs found

    Guidance and Control Design for High-Speed Rollout and Turnoff (ROTO)

    Get PDF
    A ROTO architecture, braking and steering control law and display designs for a research high speed Rollout and Turnoff (ROTO) system applicable to transport class aircraft are described herein. Minimum surface friction and FMS database requirements are also documented. The control law designs were developed with the aid of a non-real time simulation program incorporating airframe and gear dynamics as well as steering and braking guidance algorithms. An attainable objective of this ROTO system, as seen from the results of this study, is to assure that the studied aircraft can land with runway occupancy times less then 53 seconds. Runway occupancy time is measured from the time the aircraft crosses the runway threshold until its wing tip clears the near side of the runway. Turnoff ground speeds of 70 knots onto 30 degree exits are allowed with dry and wet surface conditions. Simulation time history and statistical data are documented herein. Parameters which were treated as variables in the simulation study include aircraft touchdown weight/speed/location, aircraft CG, runway friction, sensor noise and winds. After further design and development of the ROTO control system beyond the system developed earlier, aft CG MD-11 aircraft no longer require auto-asymmetric braking (steering) and fly-by-wire nose gear steering. However, the auto ROTO nose gear hysteresis must be less than 2 degrees. The 2 sigma dispersion certified for MD-11 CATIIIB is acceptable. Using this longitudinal dispersion, three ROTO exits are recommended at 3300, 4950 and 6750 feet past the runway threshold. The 3300 foot exit is required for MD-81 class aircraft. Designs documented in this report are valid for the assumptions/models used in this simulation. It is believed that the results will apply to the general class of transport aircraft; however further effort is required to validate this assumption for the general case

    Probing the equation of state in the AGS energy range with 3-d hydrodynamics

    Full text link
    The effect of (i) the phase transition between a quark gluon plasma (QGP) and a hadron gas and (ii) the number of resonance degrees of freedom in the hadronic phase on the single inclusive distributions of 16 different types of produced hadrons for Au+Au collisions at AGS energies is studied. We have used an exact numerical solution of the relativistic hydrodynamical equations without free parameters which, because of its 3-d character, constitutes a considerable improvement over the classical Landau solution. Using two different equations of state (eos) - one containing a phase transition from QGP to the Hadronic Phase and two versions of a purely hadronic eos - we find that the first one gives an overall better description of the Au+Au experimental data at AGSAGS energies. We reproduce and analyse measured meson and proton spectra and also make predictions for anti-protons, deltas, anti-deltas and hyperons. The low m_t enhancement in pi- spectra is explained by baryon number conservation and strangeness equilibration. We also find that negative kaon data are more sensitive to the eos, as well as the K-/pi- ratio. All hyperons and deltas are sensitive to the presence of a phase transition in the forward rapidity region. Anti-protons, Omegas and heavy anti-baryons are sensitive in the whole rapidity range.Comment: 25 pages (.tex) and 9 figures (.ps

    Enteric Infection with Citrobacter rodentium Induces Coagulative Liver Necrosis and Hepatic Inflammation Prior to Peak Infection and Colonic Disease

    Get PDF
    Acute and chronic forms of inflammation are known to affect liver responses and susceptibility to disease and injury. Furthermore, intestinal microbiota has been shown critical in mediating inflammatory host responses in various animal models. Using C. rodentium, a known enteric bacterial pathogen, we examined liver responses to gastrointestinal infection at various stages of disease pathogenesis. For the first time, to our knowledge, we show distinct liver pathology associated with enteric infection with C. rodentium in C57BL/6 mice, characterized by increased inflammation and hepatitis index scores as well as prominent periportal hepatocellular coagulative necrosis indicative of thrombotic ischemic injury in a subset of animals during the early course of C. rodentium pathogenesis. Histologic changes in the liver correlated with serum elevation of liver transaminases, systemic and liver resident cytokines, as well as signal transduction changes prior to peak bacterial colonization and colonic disease. C. rodentium infection in C57BL/6 mice provides a potentially useful model to study acute liver injury and inflammatory stress under conditions of gastrointestinal infection analogous to enteropathogenic E. coli infection in humans.United States. Army Research Office (Institute for Soldier Nanotechnology grant 6915539 (SRT))National Institutes of Health (U.S.) (Grant P01 CA026731)National Institutes of Health (U.S.) (Grant P30 ES02109)National Institutes of Health (U.S.) (Toxicology Training grant ES-070220

    Synthesis of a square-planar rhodium alkylidene N-heterocyclic carbene complex and its reactivity toward alkenes

    Get PDF
    The first rhodium alkylidene square-planar complex stabilized by an N-heterocyclic carbene ligand, RhCl(-CHPh)(IPr)PPh3 (2; IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-carbene), has been prepared by reaction of RhCl(IPr)(PPh3)2 (1) with phenyldiazomethane and its dynamic behavior in solution studied. Treatment of 2 with alkenes results in the formation of the ¿2-olefin complexes RhCl(¿2-CH2-CHR)(IPr)PPh3 (3, R = H; 4, R = Ph; 5, R = OEt) and new olefins arising from the coupling of the alkylidene with the alkenes, likely via a metallacyclobutane intermediate

    The EHEC Type III Effector NleL Is an E3 Ubiquitin Ligase That Modulates Pedestal Formation

    Get PDF
    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 causes hemorrhagic colitis and may result in potentially fatal hemolytic uremia syndrome in humans. EHEC colonize the intestinal mucosa and promote the formation of actin-rich pedestals via translocated type III effectors. Two EHEC type III secreted effectors, Tir and EspFu/TccP, are key players for pedestal formation. We discovered that an EHEC effector protein called Non-LEE-encoded Ligase (NleL) is an E3 ubiquitin ligase. In vitro, we showed that the NleL C753 residue is critical for its E3 ligase activity. Functionally, we demonstrated that NleL E3 ubiquitin ligase activity is involved in modulating Tir-mediated pedestal formation. Surprisingly, EHEC mutant strain deficient in the E3 ligase activity induced more pedestals than the wild-type strain. The canonical EPEC strain E2348/69 normally lacks the nleL gene, and the ectopic expression of the wild-type EHEC nleL, but not the catalytically-deficient nleL(C753A) mutant, in this strain resulted in fewer actin-rich pedestals. Furthermore, we showed that the C. rodentium NleL homolog is a E3 ubiquitin ligase and is required for efficient infection of murine colonic epithelial cells in vivo. In summary, our study demonstrated that EHEC utilizes NleL E3 ubiquitin ligase activity to modulate Tir-mediated pedestal formation.National Institutes of Health (U.S.) (grant AI078092)National Institutes of Health (U.S.) (grant AI068655

    Distinct Populations of Hepatic Stellate Cells in the Mouse Liver Have Different Capacities for Retinoid and Lipid Storage

    Get PDF
    Hepatic stellate cell (HSC) lipid droplets are specialized organelles for the storage of retinoid, accounting for 50–60% of all retinoid present in the body. When HSCs activate, retinyl ester levels progressively decrease and the lipid droplets are lost. The objective of this study was to determine if the HSC population in a healthy, uninjured liver demonstrates heterogeneity in its capacity for retinoid and lipid storage in lipid droplets. To this end, we utilized two methods of HSC isolation, which leverage distinct properties of these cells, including their vitamin A content and collagen expression. HSCs were isolated either from wild type (WT) mice in the C57BL/6 genetic background by flotation in a Nycodenz density gradient, followed by fluorescence activated cell sorting (FACS) based on vitamin A autofluorescence, or from collagen-green fluorescent protein (GFP) mice by FACS based on GFP expression from a GFP transgene driven by the collagen I promoter. We show that GFP-HSCs have: (i) increased expression of typical markers of HSC activation; (ii) decreased retinyl ester levels, accompanied by reduced expression of the enzyme needed for hepatic retinyl ester synthesis (LRAT); (iii) decreased triglyceride levels; (iv) increased expression of genes associated with lipid catabolism; and (v) an increase in expression of the retinoid-catabolizing cytochrome, CYP2S1. Conclusion: Our observations suggest that the HSC population in a healthy, uninjured liver is heterogeneous. One subset of the total HSC population, which expresses early markers of HSC activation, may be “primed” and ready for rapid response to acute liver injury

    Biochemical evidence for the tyrosine involvement in cationic intermediate stabilization in mouse β-carotene 15, 15'-monooxygenase

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>β-carotene 15,15'-monooxygenase (BCMO1) catalyzes the crucial first step in vitamin A biosynthesis in animals. We wished to explore the possibility that a carbocation intermediate is formed during the cleavage reaction of BCMO1, as is seen for many isoprenoid biosynthesis enzymes, and to determine which residues in the substrate binding cleft are necessary for catalytic and substrate binding activity. To test this hypothesis, we replaced substrate cleft aromatic and acidic residues by site-directed mutagenesis. Enzymatic activity was measured <it>in vitro </it>using His-tag purified proteins and <it>in vivo </it>in a β-carotene-accumulating <it>E. coli </it>system.</p> <p>Results</p> <p>Our assays show that mutation of either Y235 or Y326 to leucine (no cation-π stabilization) significantly impairs the catalytic activity of the enzyme. Moreover, mutation of Y326 to glutamine (predicted to destabilize a putative carbocation) almost eliminates activity (9.3% of wt activity). However, replacement of these same tyrosines with phenylalanine or tryptophan does not significantly impair activity, indicating that aromaticity at these residues is crucial. Mutations of two other aromatic residues in the binding cleft of BCMO1, F51 and W454, to either another aromatic residue or to leucine do not influence the catalytic activity of the enzyme. Our <it>ab initio </it>model of BCMO1 with β-carotene mounted supports a mechanism involving cation-π stabilization by Y235 and Y326.</p> <p>Conclusions</p> <p>Our data are consistent with the formation of a substrate carbocation intermediate and cation-π stabilization of this intermediate by two aromatic residues in the substrate-binding cleft of BCMO1.</p
    corecore