538 research outputs found
OT 060420: A Seemingly Optical Transient Recorded by All-Sky Cameras
We report on a ~5th magnitude flash detected for approximately 10 minutes by
two CONCAM all-sky cameras located in Cerro Pachon - Chile and La Palma -
Spain. A third all-sky camera, located in Cerro Paranal - Chile did not detect
the flash, and therefore the authors of this paper suggest that the flash was a
series of cosmic-ray hits, meteors, or satellite glints. Another proposed
hypothesis is that the flash was an astronomical transient with variable
luminosity. In this paper we discuss bright optical transient detection using
fish-eye all-sky monitors, analyze the apparently false-positive optical
transient, and propose possible causes to false optical transient detection in
all-sky cameras.Comment: 7 figures, 3 tables, accepted PAS
Combined application of nitrogen and phosphorus to enhance nitrogen use efficiency and close the wheat yield gap on varying soils in semi‐arid conditions
A primary driver of the wheat yield gap in Australia and globally is the supply of nitrogen (N) and options to increase N use efficiency (NUE) are fundamental to closure of the yield gap. Co‐application of N with phosphorus (P) is suggested as an avenue to increase fertiliser NUE, and inputs of N and P fertiliser are key variable costs in low rainfall cereal crops. Within field variability in the response to nutrients due to soil and season offers a further opportunity to refine inputs for increased efficiency. The response of wheat to N fertiliser input (0, 10, 20, 40 and 80 kg N ha‐1) under four levels of P fertiliser (0, 5, 10 and 20 kg P ha−1) was measured on three key low rainfall cropping soils (dune, mid‐slope and swale) across a dune‐swale system in a low rainfall semi‐arid environment in South Australia, for three successive cropping seasons. Wheat on sandy soils produced significant and linear yield and protein responses across all three seasons, while wheat on a clay loam only produced a yield response in a high rainfall season. Responses to P fertiliser were measured on the sandy soils but more variable in nature and a consistent effect of increased P nutrition leading to increased NUE was not measured
Role of Preoperative Nerve Conduction Studies for Penetrating Hand Injuries Involving the Median Palmar Cutaneous Nerve
Penetrating lacerations to the hand are a common cause of nerve injury and can lead to debilitating pain and numbness in the distribution of the nerve affected. Owing to an overlap in the cutaneous innervation from different sensory nerves, clinically identifying the injured nerve can be difficult. We present a novel case of isolated injury to the palmar cutaneous nerve from a penetrating knife injury which was detected using \u27comparison waveform\u27 nerve conduction studies. Using this technique, we can isolate injuries to the palmar cutaneous branch of the median nerve (PCBmdn) from the median nerve, dorsal radial sensory nerve, and lateral antebrachial cutaneous nerve. In addition, sensory nerve testing identified conduction block as the mechanism of injury, which resolved after surgery at 8 weeks postoperatively. Preoperative nerve conduction study can discern the level of nerve injury to PCBmdn only, thus eliminating the need for median and radial nerve exploration at the forearm, unnecessary incisions, pain, and scarring. The objective of this case report is to illustrate the value of preoperative comparison waveform nerve conduction study, particularly the PCBmdn, in patients presenting with neurologic deficits who have sustained penetrating lacerations to the hand
Carbon sequestration potential and physicochemical properties differ between wildfire charcoals and slow-pyrolysis biochars
Pyrogenic carbon (PyC), produced naturally (wildfire charcoal) and anthropogenically (biochar), is extensively studied due to its importance in several disciplines, including global climate dynamics, agronomy and paleosciences. Charcoal and biochar are commonly used as analogues for each other to infer respective carbon sequestration potentials, production conditions, and environmental roles and fates. The direct comparability of corresponding natural and anthropogenic PyC, however, has never been tested. Here we compared key physicochemical properties (elemental composition, δ13C and PAHs signatures, chemical recalcitrance, density and porosity) and carbon sequestration potentials of PyC materials formed from two identical feedstocks (pine forest floor and wood) under wildfire charring- and slow-pyrolysis conditions. Wildfire charcoals were formed under higher maximum temperatures and oxygen availabilities, but much shorter heating durations than slow-pyrolysis biochars, resulting in differing physicochemical properties. These differences are particularly relevant regarding their respective roles as carbon sinks, as even the wildfire charcoals formed at the highest temperatures had lower carbon sequestration potentials than most slow-pyrolysis biochars. Our results challenge the common notion that natural charcoal and biochar are well suited as proxies for each other, and suggest that biochar’s environmental residence time may be underestimated when based on natural charcoal as a proxy, and vice versa
The potential determinants of young people's sense of justice: an international study
This paper uses reports from 13,000 Grade Nine pupils in five countries to examine issues such as whether they were treated fairly at school, trust their teachers and adults in wider society, are willing to sacrifice teacher attention to help others, and support the cultural integration of recent immigrants. Using such reports as ‘outcomes’ in a multi‐stage regression model, it is clear that they are largely unrelated to school‐level pupil mix variables. To some extent, these outcomes are stratified by pupil and family background in the same way for all countries. However, the largest association is with pupil‐reported experience of interactions with their teachers. Teachers appear to be a major influence on young people's sense of justice and the principles they apply in deciding whether something is fair. The paper concludes by suggesting ways in which schools and teachers could take advantage of this finding
Enhanced transfection of cell lines from Atlantic salmon through nucoleofection and antibiotic selection
Background
Cell lines from Atlantic salmon kidney have made it possible to culture and study infectious salmon anemia virus (ISAV), an aquatic orthomyxovirus affecting farmed Atlantic salmon. However, transfection of these cells using calcium phosphate precipitation or lipid-based reagents shows very low transfection efficiency. The Amaxa Nucleofector technology™ is an electroporation technique that has been shown to be efficient for gene transfer into primary cells and hard to transfect cell lines.
Findings
Here we demonstrate, enhanced transfection of the head kidney cell line, TO, from Atlantic salmon using nucleofection and subsequent flow cytometry. Depending on the plasmid promoter, TO cells could be transfected transiently with an efficiency ranging from 11.6% to 90.8% with good viability, using Amaxa's cell line nucleofector solution T and program T-20. A kill curve was performed to investigate the most potent antibiotic for selection of transformed cells, and we found that blasticidin and puromycin were the most efficient for selection of TO cells.
Conclusions
The results show that nucleofection is an efficient way of gene transfer into Atlantic salmon cells and that stably transfected cells can be selected with blasticidin or puromycin
An argument against the focus on Community Resilience in Public Health
Background - It has been suggested that Public Health professionals focus on community resilience in tackling chronic problems, such as poverty and deprivation; is this approach useful?
Discussion - Resilience is always i) of something ii) to something iii) to an endpoint, as in i) a rubber ball, ii) to a blunt force, iii) to its original shape. “Community resilience” might be: of a neighbourhood, to a flu pandemic, with the endpoint, to return to normality. In these two examples, the endpoint is as-you-were. This is unsuitable for some examples of resilience. A child that is resilient to an abusive upbringing has an endpoint of living a happy life despite that upbringing: this is an as-you-should-be endpoint. Similarly, a chronically deprived community cannot have the endpoint of returning to chronic deprivation: so what is its endpoint? Roughly, it is an as-you-should-be endpoint: to provide an environment for
inhabitants to live well. Thus resilient communities will be those that do this in the face of challenges. How can they be identified?
One method uses statistical outliers, neighbourhoods that do better than would be expected on a range of outcomes given a range of stressors. This method tells us that a neighbourhood is resilient but not why it is. In response, a number of researchers have attributed characteristics to resilient communities; however, these generally fail to distinguish characteristics of a good community from those of a resilient one. Making this distinction is difficult and we have not seen it successfully done; more importantly, it is arguably unnecessary.
There already exist approaches in Public Health to assessing and developing communities faced with chronic problems, typically tied to notions such as Social Capital. Communityresilience to chronic problems, if it makes sense at all, is likely to be a property that emerges from the various assets in a community such as human capital, built capital and natural capital.
Summary - Public Health professionals working with deprived neighbourhoods would be better to focus on what neighbourhoods have or could develop as social capital for living well, rather than on the vague and tangential notion of community resilience.</p
Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
Nano-Stenciled RGD-Gold Patterns That Inhibit Focal Contact Maturation Induce Lamellipodia Formation in Fibroblasts
Cultured fibroblasts adhere to extracellular substrates by means of cell-matrix adhesions that are assembled in a hierarchical way, thereby gaining in protein complexity and size. Here we asked how restricting the size of cell-matrix adhesions affects cell morphology and behavior. Using a nanostencil technique, culture substrates were patterned with gold squares of a width and spacing between 250 nm and 2 µm. The gold was functionalized with RGD peptide as ligand for cellular integrins, and mouse embryo fibroblasts were plated. Limiting the length of cell-matrix adhesions to 500 nm or less disturbed the maturation of vinculin-positive focal complexes into focal contacts and fibrillar adhesions, as indicated by poor recruitment of α5-integrin. We found that on sub-micrometer patterns, fibroblasts spread extensively, but did not polarize. Instead, they formed excessive numbers of lamellipodia and a fine actin meshwork without stress fibers. Moreover, these cells showed aberrant fibronectin fibrillogenesis, and their speed of directed migration was reduced significantly compared to fibroblasts on 2 µm square patterns. Interference with RhoA/ROCK signaling eliminated the pattern-dependent differences in cell morphology. Our results indicate that manipulating the maturation of cell-matrix adhesions by nanopatterned surfaces allows to influence morphology, actin dynamics, migration and ECM assembly of adhering fibroblasts
Influence of surface geometry on the culture of human cell lines: a comparative study using flat, round-bottom and v-shaped 96 well plates
© 2017 Shafaie et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.In vitro cell based models have been invaluable tools for studying cell behaviour and for investigating drug disposition, toxicity and potential adverse effects of administered drugs. Within this drug discovery pipeline, the ability to assess and prioritise candidate compounds as soon as possible offers a distinct advantage. However, the ability to apply this approach to a cell culture study is limited by the need to provide an accurate, in vitro-like, microenvironment in conjunction with a low cost and high-throughput screening (HTS) methodology. Although the geometry and/or alignment of cells has been reported to have a profound influence on cell growth and differentiation, only a handful of studies have directly compared the growth of a single cell line on different shaped multiwell plates the most commonly used substrate for HTS, in vitro, studies. Herein, the impact of various surface geometries (flat, round and v-shaped 96 well plates), as well as fixed volume growth media and fixed growth surface area have been investigated on the characteristics of three commonly used human cell lines in biopharmaceutical research and development, namely ARPE-19 (retinal epithelial), A549 (alveolar epithelial) and Malme-3M (dermal fibroblastic) cells. The effect of the surface curvature on cells was characterised using a combination of a metabolic activity assay (CellTiter AQ/MTS), LDH release profiles (CytoTox ONE) and absolute cell counts (Guava ViaCount), respectively. In addition, cell differentiation and expression of specific marker proteins were determined using flow cytometry. These in vitro results confirmed that surface topography had a significant effect (p < 0.05) on cell activity and morphology. However, although specific marker proteins were expressed on day 1 and 5 of the experiment, no significant differences were seen between the different plate geometries (p < 0.05) at the later time point. Accordingly, these results highlight the impact of substrate geometry on the culture of a cell line and the influence it has on the cells' correct growth and differentiation characteristics. As such, these results provide important implications in many aspects of cell biology the development of a HTS, in vitro, cell based systems to further investigate different aspects of toxicity testing and drug delivery.Peer reviewedFinal Published versio
- …