735 research outputs found

    Solid lipid nanoparticles for the delivery of anti-microbial oligonucleotides

    Get PDF
    Novel alternatives to antibiotics are urgently needed for the successful treatment of antimicrobial resistant (AMR) infections. Experimental antibacterial oligonucleotide therapeutics, such as transcription factor decoys (TFD), are a promising approach to circumvent AMR. However, the therapeutic potential of TFD is contingent upon the development of carriers that afford efficient DNA protection against nucleases and delivery of DNA to the target infection site. As a carrier for TFD, here we present three prototypes of anionic solid lipid nanoparticles that were coated with either the cationic bolaamphiphile 12-bistetrahydroacridinium or with protamine. Both compounds switched particles zeta potential to positive values, showing efficient complexation with TFD and demonstrable protection from deoxyribonuclease. The effective delivery of TFD into bacteria was confirmed by confocal microscopy while SLN-bacteria interactions were studied by flow cytometry. Antibacterial efficacy was confirmed using a model TFD targeting the Fur iron uptake pathway in E.coli under microaerobic conditions. Biocompatibility of TFDSLN was assessed using in vitro epithelial cell and in vivo Xenopus laevis embryo models. Taken together these results indicate that TFD-SLN complex can offer preferential accumulation of TFD in bacteria and represent a promising class of carriers for this experimental approach to tackling the worldwide AMR crisis

    Effects of traumatic brain injury on cognitive functioning and cerebral metabolites in HIV-infected individuals.

    Get PDF
    We explored the possible augmenting effect of traumatic brain injury (TBI) history on HIV (human immunodeficiency virus) associated neurocognitive complications. HIV-infected participants with self-reported history of definite TBI were compared to HIV patients without TBI history. Groups were equated for relevant demographic and HIV-associated characteristics. The TBI group evidenced significantly greater deficits in executive functioning and working memory. N-acetylaspartate, a putative marker of neuronal integrity, was significantly lower in the frontal gray matter and basal ganglia brain regions of the TBI group. Together, these results suggest an additional brain impact of TBI over that from HIV alone. One clinical implication is that HIV patients with TBI history may need to be monitored more closely for increased risk of HIV-associated neurocognitive disorder signs or symptoms

    Gene expression profiling identifies activated growth factor signaling in poor prognosis (Luminal-B) estrogen receptor positive breast cancer

    Get PDF
    BACKGROUND: Within estrogen receptor-positive breast cancer (ER+ BC), the expression levels of proliferation-related genes can define two clinically distinct molecular subtypes. When treated with adjuvant tamoxifen, those ER+ BCs that are lowly proliferative have a good prognosis (luminal-A subtype), however the clinical outcome of those that are highly proliferative is poor (luminal-B subtype). METHODS: To investigate the biological basis for these observations, gene set enrichment analysis (GSEA) was performed using microarray data from 246 ER+ BC samples from women treated with adjuvant tamoxifen monotherapy. To create an in vitro model of growth factor (GF) signaling activation, MCF-7 cells were treated with heregulin (HRG), an HER3 ligand. RESULTS: We found that a gene set linked to GF signaling was significantly enriched in the luminal-B tumors, despite only 10% of samples over-expressing HER2 by immunohistochemistry. To determine the biological significance of this observation, MCF-7 cells were treated with HRG. These cells displayed phosphorylation of HER2/3 and downstream ERK and S6. Treatment with HRG overcame tamoxifen-induced cell cycle arrest with higher S-phase fraction and increased anchorage independent colony formation. Gene expression profiles of MCF-7 cells treated with HRG confirmed enrichment of the GF signaling gene set and a similar proliferative signature observed in human ER+ BCs resistant to tamoxifen. CONCLUSION: These data demonstrate that activation of GF signaling pathways, independent of HER2 over-expression, could be contributing to the poor prognosis of the luminal-B ER+ BC subtype.Journal Articleinfo:eu-repo/semantics/publishe

    Planning Future Strategies for Domestic and International NeuroAIDS Research, July 24–25, 2008

    Get PDF
    The National Institute of Mental Health in cooperation with the National Institute on Drug Abuse and the National Institute of Neurological Disorders and Stroke organized a meeting on July 24–25, 2008 to develop novel research directions for neuroAIDS research. The deliberations of this meeting are outlined in this brief report. Several critical research areas in neuroAIDS were identified as areas of emphasis. Opportunities for collaborations between large NIH-funded projects were also discussed

    Cationic liposomal vectors incorporating a bolaamphiphile for oligonucleotide antimicrobials

    Get PDF
    Antibacterial resistance has become a serious crisis for world health over the last few decades, so that new therapeutic approaches are strongly needed to face the threat of resistant infections. Transcription factor decoys (TFD) are a promising new class of antimicrobial oligonucleotides with proven in vivo activity when combined with a bolaamphiphilic cationic molecule, 12-bis-THA. These two molecular species form stable nanoplexes which, however, present very scarce colloidal stability in physiological media, which poses the challenge of drug formulation and delivery. In this work, we reformulated the 12-bis-THA/TFD nanoplexes in a liposomal carrier, which retains the ability to protect the oligonucleotide therapeutic from degradation and deliver it across the bacterial cell wall. We performed a physical-chemical study to investigate how the incorporation of 12-bis-THA and TFD affects the structure of POPC- and POPC/DOPE liposomes. Analysis was performed using dynamic light scattering (DLS), ζ-potential measurements, small-angle x-ray scattering (SAXS), and steady-state fluorescence spectroscopy to better understand the structure of the liposomal formulations containing the 12-bis-THA/TFD complexes. Oligonucleotide delivery to model Escherichia coli bacteria was assessed by means of confocal scanning laser microscopy (CLSM), evidencing the requirement of a fusogenic helper lipid for transfection. Preliminary biological assessments suggested the necessity of further development by modulation of 12-bis-THA concentration in order to optimize its therapeutic index, i.e. the ratio of antibacterial activity to the observed cytotoxicity. In summary, POPC/DOPE/12-bis-THA liposomes appear as promising formulations for TFD delivery

    Cationic liposomal vectors incorporating a bolaamphiphile for oligonucleotide antimicrobials

    Get PDF
    Antibacterial resistance has become a serious crisis for world health over the last few decades, so that new therapeutic approaches are strongly needed to face the threat of resistant infections. Transcription factor decoys (TFD) are a promising new class of antimicrobial oligonucleotides with proven in vivo activity when combined with a bolaamphiphilic cationic molecule, 12-bis-THA. These two molecular species form stable nanoplexes which, however, present very scarce colloidal stability in physiological media, which poses the challenge of drug formulation and delivery. In this work, we reformulated the 12-bis-THA/TFD nanoplexes in a liposomal carrier, which retains the ability to protect the oligonucleotide therapeutic from degradation and deliver it across the bacterial cell wall. We performed a physical-chemical study to investigate how the incorporation of 12-bis-THA and TFD affects the structure of POPC- and POPC/DOPE liposomes. Analysis was performed using dynamic light scattering (DLS), ζ-potential measurements, small-angle x-ray scattering (SAXS), and steady-state fluorescence spectroscopy to better understand the structure of the liposomal formulations containing the 12-bis-THA/TFD complexes. Oligonucleotide delivery to model Escherichia coli bacteria was assessed by means of confocal scanning laser microscopy (CLSM), evidencing the requirement of a fusogenic helper lipid for transfection. Preliminary biological assessments suggested the necessity of further development by modulation of 12-bis-THA concentration in order to optimize its therapeutic index, i.e. the ratio of antibacterial activity to the observed cytotoxicity. In summary, POPC/DOPE/12-bis-THA liposomes appear as promising formulations for TFD delivery

    Distinct Clinical and Pathological Features Are Associated with the BRAFT1799A(V600E) Mutation in Primary Melanoma

    Get PDF
    The BRAFT1799A mutation encodes BRAFV600E that leads to activation of the mitogen-activated protein kinase pathway. This study aimed to assess the clinico-pathological features of primary invasive melanomas containing the BRAFT1799A mutation. Patients (n=251) with invasive primary melanomas from Australia were interviewed and examined with respect to their melanoma characteristics and risk factors. Independent review of pathology, allele-specific PCR for the BRAFT1799A mutation, immunohistochemical staining with Ki67, and phospho-histone-H3 (PH3) were performed. The BRAFT1799A mutation was found in 112 (45%) of the primary melanomas. Associations with the BRAFT1799A mutation (P<0.05) were as follows: low tumor thickness (odds ratio (OR)=3.3); low mitotic rate (OR=2.0); low Ki67 score (OR=5.0); low PH3 score (OR=3.3); superficial spreading melanoma (OR=10.0); pigmented melanoma (OR=3.7); a lack of history of solar keratoses (OR=2.7); a location on the trunk (OR=3.4) or extremity (OR=2.0); a high level of self-reported childhood sun exposure (OR=2.0); ≤50 years of age (OR=2.5); and fewer freckles (OR=2.5). We conclude that the BRAFT1799A mutation has associations with host phenotype, tumor location, and pigmentation. Although implicated in the control of the cell cycle, the BRAFT1799A mutation is associated with a lower rate of tumor proliferation

    Leveraging Motivations, Personality, and Sensory Cues for Vertebrate Pest Management

    Get PDF
    Acknowledgments: We wish to thank Manaaki Whenua – Landcare Research staff, particularly Peter Millard and Bruce Warburton, for facilitating and supporting this research. Thanks to Jenna Bytheway for infographic design. This research was supported by Strategic Science Investment funding from the New Zealand Ministry of Business, Innovation and Employment’s Science and Innovation Group, awarded to Manaaki Whenua – Landcare Research. T.W.B. was supported by Marie Skłodowska-Curie grant number 747120, and A.S. was supported by National Science Foundation grant IOS 1456724.Peer reviewedPublisher PD
    corecore