95 research outputs found

    Measurements of hillslope debris flow impact pressure on obstacles

    Get PDF
    We present measurements of hillslope debris flow impact pressures on small obstacles. Two impact sensors have been installed in a real-scale experimental site where 50m3 of water-saturated soil material are released from rest. Impact velocities vary between 2 and 13m/s; flow heights between 0.3 and 1.0m. The maximum impact pressures measured over 15 events represent between 2 and 50 times the equivalent static pressures. The measurements reveal that quadratic velocity-dependent formulas can be used to estimate impact pressures. Impact coefficients C are constant from front to tail and range between 0.4 < C < 0.8 according to the individual events. The pressure fluctuations to depend on the sensor size and are between 20% and 60% of the mean pressure values. Our results suggest that hazard guidelines for hillslope debris flows should be based on quadratic velocity-dependent formula

    A debris-flow alarm system for the Alpine Illgraben catchment: design and performance

    Get PDF
    We describe the development, implementation, and first analyses of the performance of a debris-flow warning system for the Illgraben catchment and debris fan area. The Illgraben catchment (9.5km2), located in the Canton of Valais, Switzerland, in the Rhone River valley, is characterized by frequent and voluminous sediment transport and debris-flow activity, and is one of the most active debris-flow catchments in the Alps. It is the site of an instrumented debris-flow observation station in operation since the year 2000. The residents in Susten (municipality Leuk), tourists, and other land users, are exposed to a significant hazard. The warning system consists of four modules: community organizational planning (hazard awareness and preparedness), event detection and alerting, geomorphic catchment observation, and applied research to facilitate the development of an early warning system based on weather forecasting. The system presently provides automated alert signals near the active channel prior to (5-15min) the arrival of a debris flow or flash flood at the uppermost frequently used channel crossing. It is intended to provide data to support decision-making for warning and evacuation, especially when unusually large debris flows are expected to leave the channel near populated areas. First-year results of the detection and alert module in comparison with the data from the independent debris-flow observation station are generally favorable. Twenty automated alerts (alarms) were issued, which triggered flashing lights and sirens at all major footpaths crossing the channel bed, for three debris flows and 16 flood flows. Only one false alarm was issued. The major difficulty we encountered is related to the variability and complexity of the events (e.g., events consisting of multiple surges) and can be largely solved by increasing the duration of the alarm. All of the alarms for hazardous events were produced by storms with a rainfall duration and intensity larger than the threshold for debris-flow activity that was defined in an earlier study, supporting our intention to investigate the use of rainfall forecasts to increase the time available for warning and implementation of active countermeasure

    A dilatant two-phase debris flow model with erosion validated by full-scale field data from the Illgraben test station

    Get PDF
    We propose a dilatant, two-layer debris flow model validated by full scale density/saturation measurements obtained from the Swiss Illgraben test site. Like many existing models we suppose the debris flow consists of a matrix of solid particles (rocks, boulders) that is surrounded by muddy fluid. However, we split the muddy fluid into two fractions. One part, the inter-granular fluid, is bonded to the solid matrix and fills the void space between the solid particles. The combination of solid material and inter-granular fluid forms the first layer of the debris flow. The second part of the muddy fluid is not bonded to the solid matrix and can move independently from the first layer. This free fluid forms the second layer of the debris flow. During flow the rocky particulate material is sheared which induces dilatant motions that change the solid/fluid concentration of the first layer and then his density. As suggested by real data of Illgraben, the rheology used is not constant and uniform but a function of the flow composition/ density. The model is then compared to real debris flow data of Illgraben and tested on a real event in Ritigraben for which erosion data are available

    Inferring spatial variations in velocity profiles and bed geometry of natural debris flows based on discharge estimates from high-frequency 3D LiDAR point clouds; Illgraben, Switzerland

    Get PDF
    More detailed field measurements are required for a better understanding of surging debris flows. In this work, we analyze a debris flow at the field-scale using timelapse point clouds from a high-resolution, high-frequency 3D LiDAR sensor, which has been installed over a check dam on the fan of the Illgraben catchment in Switzerland. In our investigations, we manually measured the front velocity and tracked individual features such as large boulders and woody debris over a 25 m long channel segment. We observed a change in the front velocity as well as a difference in the velocity of large boulders and woody debris (vboulder ≈ 0.6 vwood) during the second surge of the event. We also estimated the discharge for different closely spaced channel sections based on automated measurements of the cross-sectional area and the surface velocity, which enabled us to infer spatial variations in the bed geometry and the velocity profile. From the discharge estimates, we then derived the volume of this event. Over the course of the next year, the amount of field-scale LiDAR data from the Illgraben will increase substantially and allow for an even more detailed analysis of fundamental debris-flow processes

    Insights into Rock-Ice Avalanche Dynamics by Combined Analysis of Seismic Recordings and a Numerical Avalanche Mode

    Get PDF
    Rock‐ice avalanches larger than 1 × 106 m3 are high‐magnitude, low‐frequency events that may occur in all ice‐covered, high mountain areas around the world and can cause extensive damage if they reach populated regions. The temporal and spatial evolution of the seismic signature from two events was analyzed, and recordings at selected stations were compared to numerical model results of avalanche propagation. The first event is a rock‐ice avalanche from Iliamna volcano in Alaska which serves as a “natural laboratory” with simple geometric conditions. The second one originated on Aoraki/Mt. Cook, New Zealand Southern Alps, and is characterized by a much more complex topography. A dynamic numerical model was used to calculate total avalanche momentum, total kinetic energy, and total frictional work rate, among other parameters. These three parameters correlate with characteristics of the seismic signature such as duration and signal envelopes, while other parameters such as flow depths, flow path and deposition geometry are well in agreement with observations. The total frictional work rate shows the best correlation with the absolute seismic amplitude, suggesting that it may be used as an independent model evaluation criterion and in certain cases as model calibration parameter. The good fit is likely because the total frictional work rate represents the avalanche ’s energy loss rate, part of which is captured by the seismometer. Deviations between corresponding calculated and measured parameters result from site and path effects which affect the recorded seismic signal or indicate deficiencies of the numerical model. The seismic recordings contain additional information about when an avalanche reaches changes in topography along the runout path and enable more accurate velocity calculations. The new concept of direct comparison of seismic and avalanche modeling data helps to constrain the numerical model input parameters and to improve the understanding of (rock‐ice) avalanche dynamics

    Decreasing landslide erosion on steeper slopes in soil‐mantled landscapes

    Get PDF
    Slope‐stability models predict that steeper hillslopes require smaller hydrological triggers for shallow landslides to occur due to the added downslope pull of gravity, which should result in more frequent landslides and faster erosion. However, field observations indicate that landslide frequency does not consistently increase on steeper hillslopes. Here, we use measurements of 1,096 soil landslides in California and Switzerland, and a compilation of landslide geometries, to show that steeper hillslopes typically have thinner soils and that thin soils inhibit landslides due to enhanced roles of cohesion and boundary stresses. We find that the landscape‐averaged landslide erosion depth peaks near the threshold slope for instability, and it drops to half that value on hillslopes that are just 5° to 10° steeper. We propose that faster rates of soil creep on steeper slopes cause thin and more stable soils, which in turn reduces landslide erosion, despite the added pull of gravity
    corecore