39 research outputs found

    Determination of Hydrophilic and Amphiphilic Organic Pollutants in the Aquatic Environment

    Get PDF
    Environmental chemists performing monitoring or process-oriented fate and behavior studies on organic micropollutants face the challenge of having to determine low concentrations of problem compounds in complex mixtures and difficult matrices, such as sewage sludge, surface and groundwater. Selective extraction and enrichment help to overcome sensitivity limitations and also to reduce the number of different species in the sample. A subsequent chromatographic separation step, together with analyte-specific detection, finally allows to identify and quantify single analytes in the presence of other organic material. This article describes a selection of analytical development work carried out at EAWAG for the determination of hydrophilic and amphiphilic organic pollutants in the aquatic environment

    Reactions of pyrrole, imidazole, and pyrazole with ozone:Kinetics and mechanisms

    Get PDF
    Five-membered nitrogen-containing heterocyclic compounds (azoles) belong to potential moieties in complex structures where transformations during ozonation can occur. This study focused on the azole-ozone chemistry of pyrrole, imidazole, and pyrazole as model compounds. Reaction kinetics and ozonation products were determined by kinetic and analytical methods including NMR, LC-HRMS/MS, HPLC-UV, and IC-MS. Analyses of reactive oxygen species (O-1(2), & x2d9;OH, H2O2), quantum chemical computations (Gibbs energies), and kinetic simulations were used to further support the proposed reaction mechanisms. The species-specific second-order rate constants for the reactions of ozone with pyrrole and imidazole were (1.4 +/- 1.1) x 10(6) M-1 s(-1) and (2.3 +/- 0.1) x 10(5) M-1 s(-1), respectively. Pyrazole reacted more slowly with ozone at pH 7 (k(app) = (5.6 +/- 0.9) x 10(1) M-1 s(-1)). Maleimide was an identified product of pyrrole with a 34% yield. Together with other products, formate, formamide, and glyoxal, C and N mass balances of similar to 50% were achieved. Imidazole reacted with ozone to cyanate, formamide, and formate (similar to 100% yields per transformed imidazole, respectively) with a closed mass balance. For pyrazole, a high ozone : pyrazole molar stoichiometry of 4.6 was found, suggesting that the transformation products contributed to the over-stoichiometric consumption of ozone (e.g., hydroxypyrazoles). Glyoxal and formate were the only identified transformation products (C mass balance of 65%). Overall, the identified major products are suspected to hydrolyze and/or be biodegraded and thereby abated by a biological post-treatment typically following ozonation. However, as substructures of more complex compounds (e.g., micropollutants), they might be more persistent during biological post-treatment

    Reactions of aliphatic amines with ozone: Kinetics and mechanisms

    No full text
    Aliphatic amines are common constituents in micropollutants and dissolved organic matter and present in elevated concentrations in wastewater-impacted source waters. Due to high reactivity, reactions of aliphatic amines with ozone are likely to occur during ozonation in water and wastewater treatment. We investigated the kinetics and mechanisms of the reactions of ozone with ethylamine, diethylamine, and triethylamine as model nitrogenous compounds. Species-specific second-order rate constants for the neutral parent amines ranged from 9.3 x 10(4) to 2.2 x 10(6)M(-1)s(-1) and the apparent second-order rate constants at pH 7 for potential or identified transformation products were 6.8 x 10(5) M(-1)s(-1) for N,N-diethylhydroxylamine, similar to 10(5) M(-1)s(-1) for N-ethylhydroxylamine, 1.9 x 10(3) M(-1)s(-1) for N-ethylethanimine oxide, and 3.4M(-1)s(-1) for nitroethane. Product analyses revealed that all amines were transformed to products containing a nitrogen-oxygen bond (e.g., triethylamine N-oxide and nitroethane) with high yields, i.e., 64-100% with regard to the abated target amines. These findings could be confirmed by measurements of singlet oxygen and hydroxyl radical which are formed during the amine-ozone reactions. Based on the high yields of nitroethane from ethylamine and diethylamine, a significant formation of nitroalkanes can be expected during ozonation of waters containing high levels of dissolved organic nitrogen, as expected in wastewaters or wastewater-impaired source waters. This may pose adverse effects on the aquatic environment and human health. (C) 2019 Elsevier Ltd. All rights reserved

    Characterization of advanced wastewater treatment with ozone and activated carbon using LC-HRMS based non-target screening with automated trend assignment

    No full text
    Advanced treatment is increasingly being applied to improve abatement of micropollutants in wastewater effluent and reduce their load to surface waters. In this study, non-target screening of high-resolution mass spectrometry (HRMS) data, collected at three Swiss wastewater treatment plants (WWTPs), was used to evaluate different advanced wastewater treatment setups, including (1) granular activated carbon (GAC) filtration alone, (2) pre-ozonation followed by GAC filtration, and (3) pre-ozonation followed by powdered activated carbon (PAC) dosed onto a sand filter. Samples were collected at each treatment step of the WWTP and analyzed with reverse-phase liquid chromatography coupled to HRMS. Each WWTP received a portion of industrial wastewater and a prioritization method was applied to select non-target features potentially resulting from industrial activities. Approximately 37,000 non-target features were found in the influents of the WWTPs. A number of non-target features (1207) were prioritized as likely of industrial origin and 54 were identified through database spectral matching. The fates of all detected non-target features were assessed through a novel automated trend assignment method. A trend was assigned to each non-target feature based on the normalized intensity profile for each sampling date. Results showed that 73±4% of influent non-target features and the majority of industrial features (89%) were well-removed (i.e., >80% intensity reduction) during biological treatment in all three WWTPs. Advanced treatment removed, on average, an additional 11% of influent non-target features, with no significant differences observed among the different advanced treatment settings. In contrast, when considering a subset of 66 known micropollutants, advanced treatment was necessary to adequately abate these compounds and higher abatement was observed in fresh GAC (7,000–8,000 bed volumes (BVs)) compared to older GAC (18,000–48,000 BVs) (80% vs 56% of micropollutants were well-removed, respectively). Approximately half of the features detected in the WWTP effluents were features newly formed during the various treatment steps. In ozonation, between 1108-3579 features were classified as potential non-target ozonation transformation products (OTPs). No difference could be observed for their removal in GAC filters at the BVs investigated (70% of OTPs were well-removed on average). Similar amounts (67%) was observed with PAC (7.7–13.6 mg/L) dosed onto a sand filter, demonstrating that a post-treatment with activated carbon is efficient for the removal of OTPs.ISSN:0043-1354ISSN:1879-244

    High content of low molecular weight organics does not always affect pharmaceutical adsorption on activated carbon: The case of acetate, propionate and ethanol in source-separated urine

    No full text
    Adsorption on activated carbon is a common process to remove pharmaceuticals in wastewater treatment. Activated carbon adsorption is usually applied to wastewater with a low content of biological degradable organics, i.e. after biological treatment. Especially low molecular weight (LMW) compounds are known to compete with pharmaceuticals for adsorption sites. The goal of this study was to test the hypothesis that biological treatment is necessary for efficient pharmaceutical removal. Source-separated urine after anaerobic storage (anaerobically stored urine) and after aerobic biological removal of organics without nitrification (organics-depleted urine) were used in this study. In anaerobically stored urine 60% of the organic compounds were LMW organics, of which about 40% were acetate and propionate. 74% of the DOC and 100% of acetate and propionate were removed during aerobic biological treatment. To investigate the effect of the organic compounds on pharmaceutical removal, sorption experiments with 19 spiked pharmaceuticals and one artificial sweetener were conducted with powdered activated carbon. Ethanol, another LMW organic, was included in the study, as it is regularly used for pharmaceutical spiking thereby strongly increasing the DOC content. The experiments showed that the adsorption of the pharmaceuticals and the sweetener were hardly affected by the easily biodegradable LMW organics or ethanol. Therefore, it was concluded that biological pre-treatment is not necessary for efficient pharmaceutical adsorption. Since acetate, propionate and ethanol contribute substantially to the DOC content but do not absorb UV light, the latter is recommended as indicator for pharmaceutical removal in solutions with high contents of biodegradable LMW organics

    Removal of pharmaceuticals from nitrified urine by adsorption on granular activated carbon

    No full text
    Nitrification and distillation of urine allow for the recovery of all nutrients in a highly concentrated fertilizer solution. However, pharmaceuticals excreted with urine are only partially removed during these two process steps. For a sustainable and safe application, more extensive removal of pharmaceuticals is necessary. To enhance the pharmaceutical removal, which is already occurring during urine storage, nitrification and distillation, an adsorption column with granular activated carbon (GAC) can be included in the treatment train. We executed a pilot-scale study to investigate the adsorption of eleven indicator pharmaceuticals on GAC. During 74 days, we treated roughly 1000 L of pre-filtered and nitrified urine spiked with pharmaceuticals in two flow-through GAC columns filled with different grain sizes. We compared the performance of these columns by calculating the number of treated bed volumes until breakthrough and carbon usage rates. The eleven spiked pharmaceuticals were candesartan, carbamazepine, clarithromycin, diclofenac, emtricitabine, hydrochlorothiazide, irbesartan, metoprolol, N4-acetylsulfamethoxazole, sulfamethoxazole and trimethoprim. At the shortest empty bed contact time (EBCT) of 25 min, immediate breakthrough was observed in both columns shortly after the start of the experiments. Strong competition by natural organic material (NOM) could have caused the low pharmaceutical removal at the EBCT of 25 min. At EBCTs of 70, 92 and 115 min, more than 660 bed volumes could be treated until breakthrough in the column with fine GAC. The earliest breakthrough was observed for candesartan and clarithromycin. On coarse GAC, only half the number of bed volumes could be treated until breakthrough compared to fine GAC. The probable reason for the later breakthrough with fine GAC is the smaller intraparticle diffusive path length. DOC and UV absorbance measurements at 265 nm indicated that both parameters can be used as indicators for the breakthrough of pharmaceuticals. In contrast to pharmaceuticals and DOC, the nutrient compounds ammonium, nitrate, phosphate, potassium and sulfate were not removed significantly. A comparison with literature values suggests that the amount of GAC needed to remove pharmaceuticals from human excreta could be reduced by nearly two orders of magnitude, if urine were treated on site instead of being discharged and treated in a centralized wastewater treatment plant
    corecore