9 research outputs found

    Plasma concentration guided dosing of drugs used for the treatment of childhood leukaemias: protocol for a systematic review

    Get PDF
    Introduction: Childhood leukaemia is the most common type of cancer in children and represents among 25% of the diagnoses in children <15 years old. Childhood survival rates have significantly improved within the last 40 years due to a rapid advancement in therapeutic interventions. However, in high-risk groups, survival rates remain poor. Pharmacokinetic (PK) data of cancer medications in children are limited and thus current dosing regimens are based on studies with small sample sizes. In adults, large variability in PK is observed and dose individualisation (plasma concentration guided dosing) has been associated with improved clinical outcomes; whether this is true for children is still unknown. This provides an opportunity to explore this strategy in children to potentially reduce toxicities and ensure optimal dosing. This paper will provide a protocol to systematically review studies that have used dose individualisation of drugs used in the treatment of childhood leukaemias. Methods and analysis: Systematic review methodology will be applied to identify, select and extract data from published plasma guided dosing studies conducted in a paediatric leukaemia cohort. Databases (eg, Ovid Embase, Ovid MEDLINE, Ovid Cochrane) and clinical trial registries (CENTRAL, ClinicalTrials.gov and ISRCTN) will be used to perform the systematic literature search (up until February 2021). Only full empirical studies will be included, with primary clinical outcomes (progression-free survival, toxicities, minimal residual disease status, complete cytogenetic response, partial cytogenetic response and major molecular response) being used to decide whether the study will be included. The quality of included studies will be undertaken, with a subgroup analysis where appropriate. Ethics and dissemination: This systematic review will not require ethics approval as there will not be collection of primary data. Findings of this review will be made available through publications in peer-reviewed journals and conference presentations. Gaps will be identified in current literature to inform future-related research. PROSPERO registration number CRD42021225045

    Developing a Nationwide Infrastructure for Therapeutic Drug Monitoring of Targeted Oral Anticancer Drugs: The ON-TARGET Study Protocol

    Get PDF
    Exposure-efficacy and/or exposure-toxicity relationships have been identified for up to 80% of oral anticancer drugs (OADs). Usually, OADs are administered at fixed doses despite their high interindividual pharmacokinetic variability resulting in large differences in drug exposure. Consequently, a substantial proportion of patients receive a suboptimal dose. Therapeutic Drug Monitoring (TDM), i.e., dosing based on measured drug concentrations, may be used to improve treatment outcomes. The prospective, multicenter, non-interventional ON-TARGET study (DRKS00025325) aims to investigate the potential of routine TDM to reduce adverse drug reactions in renal cell carcinoma patients receiving axitinib or cabozantinib. Furthermore, the feasibility of using volumetric absorptive microsampling (VAMS), a minimally invasive and easy to handle blood sampling technique, for sample collection is examined. During routine visits, blood samples are collected and sent to bioanalytical laboratories. Venous and VAMS blood samples are collected in the first study phase to facilitate home-based capillary blood sampling in the second study phase. Within one week, the drug plasma concentrations are measured, interpreted, and reported back to the physician. Patients report their drug intake and toxicity using PRO-CTCAE-based questionnaires in dedicated diaries. Ultimately, the ON-TARGET study aims to develop a nationwide infrastructure for TDM for oral anticancer drugs

    Basic science232. Certolizumab pegol prevents pro-inflammatory alterations in endothelial cell function

    Get PDF
    Background: Cardiovascular disease is a major comorbidity of rheumatoid arthritis (RA) and a leading cause of death. Chronic systemic inflammation involving tumour necrosis factor alpha (TNF) could contribute to endothelial activation and atherogenesis. A number of anti-TNF therapies are in current use for the treatment of RA, including certolizumab pegol (CZP), (Cimzia Âź; UCB, Belgium). Anti-TNF therapy has been associated with reduced clinical cardiovascular disease risk and ameliorated vascular function in RA patients. However, the specific effects of TNF inhibitors on endothelial cell function are largely unknown. Our aim was to investigate the mechanisms underpinning CZP effects on TNF-activated human endothelial cells. Methods: Human aortic endothelial cells (HAoECs) were cultured in vitro and exposed to a) TNF alone, b) TNF plus CZP, or c) neither agent. Microarray analysis was used to examine the transcriptional profile of cells treated for 6 hrs and quantitative polymerase chain reaction (qPCR) analysed gene expression at 1, 3, 6 and 24 hrs. NF-ÎșB localization and IÎșB degradation were investigated using immunocytochemistry, high content analysis and western blotting. Flow cytometry was conducted to detect microparticle release from HAoECs. Results: Transcriptional profiling revealed that while TNF alone had strong effects on endothelial gene expression, TNF and CZP in combination produced a global gene expression pattern similar to untreated control. The two most highly up-regulated genes in response to TNF treatment were adhesion molecules E-selectin and VCAM-1 (q 0.2 compared to control; p > 0.05 compared to TNF alone). The NF-ÎșB pathway was confirmed as a downstream target of TNF-induced HAoEC activation, via nuclear translocation of NF-ÎșB and degradation of IÎșB, effects which were abolished by treatment with CZP. In addition, flow cytometry detected an increased production of endothelial microparticles in TNF-activated HAoECs, which was prevented by treatment with CZP. Conclusions: We have found at a cellular level that a clinically available TNF inhibitor, CZP reduces the expression of adhesion molecule expression, and prevents TNF-induced activation of the NF-ÎșB pathway. Furthermore, CZP prevents the production of microparticles by activated endothelial cells. This could be central to the prevention of inflammatory environments underlying these conditions and measurement of microparticles has potential as a novel prognostic marker for future cardiovascular events in this patient group. Disclosure statement: Y.A. received a research grant from UCB. I.B. received a research grant from UCB. S.H. received a research grant from UCB. All other authors have declared no conflicts of interes

    Cost-effectiveness of oral anticancer drugs and associated individualised dosing approaches in patients with cancer: protocol for a systematic review

    Get PDF
    Introduction Oral anticancer drugs (OADs) have rapidly expanded with more than 70 OADs targeting several molecular targets. Many of the OADs exert an exposure–response relationship but still, a ‘one-size fits-all’ dose is used, ignoring interindividual variability. Several of these OADs share similar mechanisms of actions and thus target the same cancer and has resulted in a substantial research focus on comparing the health benefit of each. However, significantly less is known about the cost–benefit associated with OADs. This paper will provide a protocol to systematically review studies that have evaluated the cost-effectiveness of OADs and their associated individualised dosing interventions.Methods and analysis Systematic review methodology will be applied to identify, select and extract data from published economic evaluation (costs and outcomes/benefits) studies of OADs and their associated individualised dosing interventions. Bibliographic databases (eg, Ovid EMBASE, Ovid MEDLINE) will be used to perform the systematic literature search (between 1 January 2000 and October 2020). Only full economic evaluations will be included, but no restrictions on study outcomes will be applied. The quality of included primary studies will be assessed using the Consolidated Health Economic Evaluation Reporting Standards checklist for reporting economic evaluations. Studies with low-quality evidence will be excluded. A narrative synthesis of the results from the included studies will be undertaken, with a subgroup analysis where appropriate.Ethics and dissemination This systematic review will not require ethics approval as there will not be any collection of primary data. Findings of this review will be disseminated through publications in peer-reviewed journals, presentations at workshops or conferences and sharing through a media release. Findings from this review will provide evidence to direct and inform policy-makers where cost-neutral strategies may be effective or where dose individualising strategies may be economically beneficial. Additionally, gaps will be identified in the current literature to inform future-related research.PROSPERO registration number CRD42020218170.Electronic supplemental material The online version of this article contains supplemental material, which is available to authorised users

    Developing a Nationwide Infrastructure for Therapeutic Drug Monitoring of Targeted Oral Anticancer Drugs: The ON-TARGET Study Protocol

    Get PDF
    Simple Summary Relationships between drug concentrations in blood and efficacy and/or toxicity have been reported for up to 80% of oral anticancer drugs (OADs). Most OADs exhibit highly variable drug concentrations at the approved dose. This may result in a significant proportion of patients with suboptimal drug concentrations. Therapeutic Drug Monitoring (TDM), which is dose optimization based on measured drug concentrations, can be used to personalize drug dosing with the overall goal to improve the benefit-risk ratio of anticancer drug treatment. The ON-TARGET study aims to investigate the feasibility of TDM in patients receiving either axitinib or cabozantinib for the treatment of renal-cell carcinoma with the main objective to improve severe tyrosine kinase inhibitor associated toxicity. Additionally, the feasibility of volumetric absorptive microsampling (VAMS), a novel minimally invasive and easy to handle blood sampling technique, for TDM sample collection is investigated. Exposure-efficacy and/or exposure-toxicity relationships have been identified for up to 80% of oral anticancer drugs (OADs). Usually, OADs are administered at fixed doses despite their high interindividual pharmacokinetic variability resulting in large differences in drug exposure. Consequently, a substantial proportion of patients receive a suboptimal dose. Therapeutic Drug Monitoring (TDM), i.e., dosing based on measured drug concentrations, may be used to improve treatment outcomes. The prospective, multicenter, non-interventional ON-TARGET study (DRKS00025325) aims to investigate the potential of routine TDM to reduce adverse drug reactions in renal cell carcinoma patients receiving axitinib or cabozantinib. Furthermore, the feasibility of using volumetric absorptive microsampling (VAMS), a minimally invasive and easy to handle blood sampling technique, for sample collection is examined. During routine visits, blood samples are collected and sent to bioanalytical laboratories. Venous and VAMS blood samples are collected in the first study phase to facilitate home-based capillary blood sampling in the second study phase. Within one week, the drug plasma concentrations are measured, interpreted, and reported back to the physician. Patients report their drug intake and toxicity using PRO-CTCAE-based questionnaires in dedicated diaries. Ultimately, the ON-TARGET study aims to develop a nationwide infrastructure for TDM for oral anticancer drugs

    The Co-Expression Pattern of Odorant Binding Proteins and Olfactory Receptors Identify Distinct Trichoid Sensilla on the Antenna of the Malaria Mosquito Anopheles gambiae

    Get PDF
    The initial steps of odorant recognition in the insect olfactory system involve odorant binding proteins (OBPs) and odorant receptors (ORs). While large families of OBPs have been identified in the malaria vector A. gambiae, little is known about their expression pattern in the numerous sensory hairs of the female antenna. We applied whole mount fluorescence in Situ hybridization (WM-FISH) and fluorescence immunohistochemistry (WM-FIHC) to investigate the sensilla co-expression of eight A. gambiae OBPs (AgOBPs), most notably AgOBP1 and AgOBP4, which all have abundant transcripts in female antenna. WM-FISH analysis of female antennae using AgOBP-specific probes revealed marked differences in the number of cells expressing each various AgOBPs. Testing combinations of AgOBP probes in two-color WM-FISH resulted in distinct cellular labeling patterns, indicating a combinatorial expression of AgOBPs and revealing distinct AgOBP requirements for various functional sensilla types. WM-FIHC with antisera to AgOBP1 and AgOBP4 confirmed expression of the respective proteins by support cells and demonstrated a location of OBPs within sensilla trichodea. Based on the finding that AgOBP1 and AgOBP4 as well as the receptor type AgOR2 are involved in the recognition of indole, experiments were performed to explore if the AgOBP-types and AgOR2 are co-expressed in distinct olfactory sensilla. Applying two-color WM-FISH with AgOBP-specific probes and probes specific for AgOR2 revealed a close association of support cells bearing transcripts for AgOBP1 and AgOBP4 and neurons with a transcript for the receptor AgOR2. Moreover, combined WM-FISH/-FIHC approaches using an AgOR2-specific riboprobe and AgOBP-specific antisera revealed the expression of the “ligand-matched” AgOBP1, AgOBP4 and AgOR2 to single trichoid hairs. This result substantiates the notion that a specific response to indole is mediated by an interplay of the proteins

    IASIL Bibliography 2013

    No full text
    corecore