5,533 research outputs found

    Use of the KlADH4 promoter for ethanol-dependent production of recombinant human serum albumine in Kluyveromyces lactis

    Get PDF
    KlADH4 is a gene of Kluyveromyces lactis encoding a mitochondrial alcohol dehydrogenase activity which is specifically induced by ethanol. The promoter of this gene was used for the expression of heterologous proteins in K. lactis, a very promising organism which can be used as an alternative host to Saccharomyces cerevisiae due to its good secretory properties. In this paper we report the ethanol-driven expression in K. lactis of the bacterial beta-glucuronidase and of the human serum albumin (HSA) genes under the control of the KlADH4 promoter. In particular, we studied the extracellular production of recombinant HSA (rHSA) with integrative and replicative vectors and obtained a significant increase in the amount of the protein with multicopy vectors, showing that no limitation of KlADH4 trans-acting factors occurred in the cells. By deletion analysis of the promoter, we identified an element (UASE) which is sufficient for the induction of KlADH4 by ethanol and, when inserted in the respective promoters, allows ethanol-dependent activation of other yeast genes, such as PGK and LAC4. We also analyzed the effect of medium composition on cell growth and protein secretion. A clear improvement in the production of the recombinant protein was achieved by shifting from batch cultures (0.3 g/liter) to fed-batch cultures (1 g/liter) with ethanol as the preferred carbon source

    Test of Einstein Equivalence Principle for 0-spin and half-integer-spin atoms: Search for spin-gravity coupling effects

    Full text link
    We report on a conceptually new test of the equivalence principle performed by measuring the acceleration in Earth's gravity field of two isotopes of strontium atoms, namely, the bosonic 88^{88}Sr isotope which has no spin vs the fermionic 87^{87}Sr isotope which has a half-integer spin. The effect of gravity upon the two atomic species has been probed by means of a precision differential measurement of the Bloch frequency for the two atomic matter waves in a vertical optical lattice. We obtain the values η=(0.2±1.6)×10−7\eta = (0.2\pm 1.6)\times10^{-7} for the E\"otv\"os parameter and k=(0.5±1.1)×10−7k=(0.5\pm1.1)\times10^{-7} for the coupling between nuclear spin and gravity. This is the first reported experimental test of the equivalence principle for bosonic and fermionic particles and opens a new way to the search for the predicted spin-gravity coupling effects.Comment: 5 pages, 4 figures. New spin-gravtity coupling analysis on the data added to the manuscrip

    State-dependent TMS reveals representation of affective body movements in the anterior intraparietal cortex

    Get PDF
    In humans, recognition of others’ actions involves a cortical network that comprises, among other cortical regions, the posterior superior temporal sulcus (pSTS), where biological motion is coded and the anterior intraparietal suclus (aIPS), where movement information is elaborated in terms of meaningful goal directed actions. This action observation system (AOS) is thought to encode neutral voluntary actions, and possibly some aspects of affective motor repertoire, but the role of the AOS’ areas in processing affective kinematic information has never been examined. Here we investigated whether the action observation system plays a role in representing dynamic emotional bodily expressions. In the first experiment, we assessed behavioural adaptation effects of observed affective movements. Participants watched series of happy or fearful whole-body point-light displays (PLDs) as adapters and were then asked to perform an explicit categorization of the emotion expressed in test PLDs. Participants were slower when categorizing any of the two emotions as long as it was congruent with the emotion in the adapter sequence. We interpreted this effect as adaptation to the emotional content of PLDs. In the second experiment, we combined this paradigm with TMS applied over either the right aIPS, pSTS and the right half of the occipital pole (corresponding to Brodmann’s area 17 and serving as control) to examine the neural locus of the adaptation effect. TMS over the aIPS (but not over the other sites) reversed the behavioural cost of adaptation, specifically for fearful contents. This demonstrates that aIPS contains an explicit representation of affective body movements

    Placebo Analgesia From a Rubber Hand

    Get PDF
    © 2017 American Pain Society Placebo analgesia, reductions in pain after administration of an inert treatment, is a well documented phenomenon. We report, to our knowledge, the first demonstration that placebo analgesia can be experienced when a sham analgesic is applied onto a rubber hand. The effect was obtained by exploiting the rubber hand illusion, in which ownership is felt over a rubber arm that is unattached to the body. Under conditions of synchronous as well as asynchronous visuotactile stimulation, a thermal pain stimulus was delivered on the real arm of 20 participants and seemingly also on the rubber arm, before and after applying a sham analgesic and a control cream only to the rubber arm. During synchronous visuotactile stimulation, pain was experienced on the rubber arm, and the application of the sham analgesic to the rubber arm significantly decreased the severity of reported pain. This shows that experience of the body can modulate expectations and the induction of placebo analgesia. Perspective This article presents an experiment suggesting that a placebo treatment applied to a rubber hand during the rubber hand illusion can produce placebo analgesia . This finding indicates that embodiment may influence the placebo effect, a previously unexamined factor in the treatment process with potential applications to treatment administration

    Towards Understanding Photodegradation Pathways in Lignins:The Role of Intramolecular Hydrogen Bonding in Excited States

    Get PDF
    The photoinduced dynamics of the lignin building blocks syringol, guaiacol, and phenol were studied using time-resolved ion yield spectroscopy and velocity map ion imaging. Following irradiation of syringol and guaiacol with a broad-band femtosecond ultraviolet laser pulse, a coherent superposition of out-of-plane OH torsion and/or OMe torsion/flapping motions is created in the first excited 1ππ* (S1) state, resulting in a vibrational wavepacket, which is probed by virtue of a dramatic nonplanar → planar geometry change upon photoionization from S1 to the ground state of the cation (D0). Any similar quantum beat pattern is absent in phenol. In syringol, the nonplanar geometry in S1 is pronounced enough to reduce the degree of intramolecular H bonding (between OH and OMe groups), enabling H atom elimination from the OH group. For guaiacol, H bonding is preserved after excitation, despite the nonplanar geometry in S1, and prevents O–H bond fission. This behavior affects the propensities for forming undesired phenoxyl radical sites in these three lignin chromophores and provides important insight into their relative “photostabilities” within the larger biopolymer

    Stability of antiphase line defects in nanometer-sized boron-nitride cones

    Full text link
    We investigate the stability of boron nitride conical sheets of nanometer size, using first-principles calculations. Our results indicate that cones with an antiphase boundary (a line defect that contains either B-B or N-N bonds) can be more stable than those without one. We also find that doping the antiphase boundaries with carbon can enhance their stability, leading also to the appearance of localized states in the bandgap. Among the structures we considered, the one with the smallest formation energy is a cone with a carbon-modified antiphase boundary that presents a spin splitting of about 0.5 eV at the Fermi level.Comment: 5 two-column pages with 2 figures Accepted for publication in Physical Review B (vol 70, 15 Nov.
    • 

    corecore