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Abstract
The use of RNA sequencing (RNA-Seq) technologies is increasing mainly due to 
the development of new next-generation sequencing machines that have reduced 
the costs and the time needed for data generation.

Nevertheless, microarrays are still the more common choice and one of the 
reasons is the complexity of the RNA-Seq data analysis. Furthermore, numerous 
biases can arise from RNA-Seq technology, and these biases have to be identified 
and removed properly in order to obtain accurate results.

Nowadays, many tools have been developed which allow to perform each step 
without high-level programming skills. However, each step of the pipeline needs 
to be performed carefully and requires a good knowledge of both the technology 
and the algorithms.

In this comprehensive review, we describe the fundamental steps of the pipe-
line for RNA-Seq analysis to identify differentially expressed genes: raw data 
quality control, trimming and filtering procedures, alignment, postmapping qual-
ity control, counting, normalization and differential expression test.

For each step, we present the most common tools and we give a complete 
description of their main characteristics and advantages focusing on the statistics 
that they perform and the assumptions that they make about the data.

The choice of the right tool can have a big impact on the final results. Until 
now, no gold standard has been established for this type of analysis.
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In conclusion, this review can be useful for both educational purposes as well 
as for less experienced practitioners of animal genomic research. In the absence 
of a commonly accepted standard procedure, the general overview presented in 
this review can help to make the best choices during the implementation of an 
RNA-Seq pipeline.

1  Introduction

Next-generation sequencing (NGS) technologies allow the generation of huge 
quantities of biological data. The development of new NGS machines has led to a 
reduction in costs and the time needed for data generation. In transcriptomics, the 
use of RNA sequencing technologies is ever increasing. RNA-Seq has considerably 
more benefits than microarray technology: it does not rely on previous knowledge 
and annotation, it has a wide range of sensitivity in detecting transcripts and it 
allows to quantify expression of different isoforms, study specific allele expression 
and identify new transcripts (Zhao et al. 2014).

The advantages on RNA sequencing compared to microarray technologies are 
even more valuable in systems genetics and system biologies studies.

RNA sequencing data facilitates delving into the analysis and extracting infor-
mation about biological pathways and gene function.

Nevertheless, microarrays are still the more common choice for gene expression 
profiling and for differentially expressed genes analysis. The reasons are many.

The cost is still significantly higher for RNA-Seq than microarrays. Furthermore, 
RNA-Seq data brings with it logistic challenges, for example, the high storage capac-
ity needed for the huge quantity of raw data produced as well as the computational 
power needed to perform some steps of the bioinformatics pipeline (Zhao et al. 2014).

Furthermore, RNA-Seq data is more complex, and a good knowledge of the tech-
nology and its related aspects are necessary in order to produce reliable results.

Different biases and artifacts that arise from these technologies and specific sta-
tistics have to be applied to obtain consistent and reliable results.

Nowadays, there are many tools available to perform all the different steps of the 
bioinformatics pipeline of RNA-Seq data (Garber et al. 2011). Some of them have a 
graphical interface which allows researchers with a basic computational background 
to perform all the steps to the final results. However, a good knowledge of the algo-
rithm and a computational background is still necessary to obtain accurate results 
and make the correct choices in term of tools and statistical tests. Tools differ in the 
statistics that they perform and in the assumptions that they make about the data. 
Therefore, they can be more or less efficient with regard to specific characteristics 
of the dataset as well as the experimental design.

The basic steps of the bioinformatics pipeline for RNA-Seq data are: raw data 
quality control followed by trimming and filtering procedures, alignment, postmap-
ping quality control, counting and normalization statistic test for differential expres-
sion (Mutz et al. 2013) (Fig. 1).
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2  Raw Data Quality Control

Raw data from RNA-Seq technology is a text file with a FASTQ format. The bio-
logical sequences of the reads as well as the sequencing quality values at each 
nucleotide base are stored in this file. Sequencing quality changes along the posi-
tions of the reads usually with a machine specific trend (Fig. 2a).

This bias together with contaminations of unwanted reads and PCR artifacts, GC 
content and presence of adapters represent technical biases.

Quality control of the raw data is a very important step that facilitates the detec-
tion of biases generated during the sequencing procedure that, if not correctly 
removed, can generate problems like incorrect mapping during the alignment and 
affect the final results.

The more common tools used in this step are FastQC (Andrews 2010), Qualimap 
(García-Alcalde et al. 2012) and Picard Tools (Wysoker et al. 2012). These tools are 
easy to use and the first two also have graphical interfaces for users with no compu-
tational skills. The statistics that are usually considered at this step are: total number 

Fig. 1 This picture represents the basic RNA-Seq data analysis pipeline. The red boxes are the 
main steps. The blue boxes describe the type of file that is given as input or produced as output at 
each step. The green boxes contain the list of the tools described in the text and they are connected 
to the step that they perform

Computational Methods for Quality Check, Preprocessing and Normalization
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of reads, per base sequence quality, per sequence quality score, per base sequence 
content, per sequence GC content, per base N content, sequence duplication levels, 
overrepresented sequences and kmer content. This type of quality control is the 
same as that applied to DNA sequencing data. It is not RNA-specific and it can only 
provide information about the quality of read data related to NGS technologies.

Bases with low sequencing quality have a higher probability to be wrong. 
Regions where the quality is too low could have many mistakes that occurred dur-
ing the sequencing and should be trimmed or filtered out. On the other hand, 
(Williams et al. 2016) recently found that a too aggressive trimming of RNA-Seq 
data before gene expression quantification can have great impact on the final esti-
mation leading to unpredictable changes, mainly caused by the generation of very 
short reads.

Tools like Picard, FastQC or Qualimap compute the summary statistics at each 
position considering a representative subset of the reads. They generate a boxplot 
for each position of the read to represent the distribution of the quality per 
position.

Once identified, this type of issue can be removed by trimming specific regions 
or entire reads, considering different criteria chosen on the basis of the quality trend 
of the library.

GC content distribution and overrepresented sequence statistics point out the 
presence of contaminations or PCR artifacts, or problems during the library 
preparation.

If the library preparation is carried out correctly, it is expected to have a specific 
distribution of GC across the set of reads. If the distribution is different from the 
expected one, it is because there is an overrepresentation probably due to 
contaminations.

With regard to the level of contamination, if most of the library is represented by 
contaminations, the sample should be removed, but first it would be better to test 
whether it is an outlier by using clustering techniques or exploratory analysis such 
as principal component analysis (PCA). Otherwise, if the contamination represents 
only a small portion of the library and the sample does not turn out to be an outlier, 
the contamination can be identified and removed before proceeding with the 
analysis.

The kmer content is another way to identify biases due to the sequencing or the 
library preparation technology. The graph represents the overrepresentation of spe-
cific sub-sequences along the length of the reads. Library protocols based on ran-
dom priming have a specific imbalance at the start of the library (Fig. 2b).

Overrepresented reads in the library can be due to strongly expressed tran-
scripts, contaminations, PCR artifacts, adapter content or DNA sequences used 
during the lab work. Furthermore, they can represent rRNA transcripts that have 
not been correctly depleted during the RNA purification step. To identify the ori-
gin of the overrepresented reads, the sequences can be aligned against RNA 
sequences in publicly available databases using BLAST or compared against 
UniVec, an annotated database for vector sequences provided by NCBI (Cochrane 
and Galperin 2010).

Computational Methods for Quality Check, Preprocessing and Normalization
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3  Alignment

During this step, the read sequences of the cDNA fragments originating from the 
random fragmentations and retrotranscription of RNA transcripts are aligned to ref-
erence genomes (Wang et al. 2009).

In this way, it is possible to identify the gene or the genomic locus that gave ori-
gin to the transcript from which each fragment derived.

The choice of the aligner has to be made considering the library and sequencing 
protocol as well as the objective of the analysis.

Tophat (Kim and Salzberg 2011) and STAR (Dobin et al. 2013) are two aligners 
specific for RNA-Seq data (able to identify splicing sites), which have shown the 
best performances.

Tophat and STAR have been tested together with other aligners using different 
datasets and they showed similar accuracy (Engström et al. 2013), but the latter has 
the advantage of being much faster and in the case of large datasets, it can be the 
best solution.

In the case of de novo mapping, the reads are used to generate contigs and recon-
struct the set of isoforms for a specific gene present in a sample directly from the 
sequenced reads. The process can be performed by using a reference or based only 
on the reads (Garber et al. 2011).

The set of contigs obtained can then be used as a reference to count the reads that 
map on them and quantify their expression in the sample. A well-known tool for de 
novo mapping is Trinity.

Trinity is composed of three independent software modules: Inchworm, Chrysalis 
and Butterfly. As a final output, the tool gives a full-length transcript with the cor-
responding alternatively spliced isoforms (Grabherr et al. 2011).

4  Postmapping Quality Control

Postmapping quality control is a fundamental step that allows to identify issues that 
have occurred during the sequencing or sample extraction or library preparation that 
can be identified only after alignment.

Nowadays, there are many freely available tools that are able to perform post-
mapping quality control.

These tools do not have a direct impact on the final results; however, it is funda-
mental to check the samples before proceeding with the other steps of the pipeline 
(Williams et al. 2014). Some of the tools are very user-friendly and furthermore, 
they generate easily interpretable outputs compared to others that need more com-
putational skills.

The most widely used tools are FastQC, Picard Tools, Qualimap, RNA-SeqQC 
(DeLuca et al. 2012), RSeQC (Wang et al. 2012) and SAMStat (Lassmann et al. 2011).

During the postmapping quality control, two main types of statistics can be per-
formed: general statistics similar to the one applied to raw data and RNA-Seq spe-
cific statistics. The first type focuses on NGS-related problems (number of reads 
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mapped, nucleotide composition, GC percentage, kmer bias) with the only differ-
ence being that the statistics are based only on uniquely mapped reads.

FastQC and Picard Tools can also be used at this point of the analysis together 
with other tools like SAMStat.

SAMStat performs a deeper analysis to detect possible biases related to the map-
ping quality.

This tool generates a plot where the properties of unmapped, poorly mapped and 
accurately mapped reads are compared in order to see if some differences are related 
to the quality of the alignment.

RNA-Seq postmapping statistics focus on genome coverage, intron/exon cover-
age, intron/exon junction analysis, and in the case of paired end protocols the insert 
size distribution (Fig. 3a).

Considering that our reads are generated mainly from processed transcripts, 
especially in the case of mRNA-enriched libraries, we expect that most of them will 
map to previously annotated exonic regions related to intronic and even less inter-
genic regions.

These types of statistics are organism-specific because they are strictly depen-
dent on the level of annotation of the genome and obviously on the library protocol 
used.

Unexpected percentages of reads from intronic and intergenic regions point out 
problems during library preparation or contamination.

Another important analysis is the intron/exon junction percentages (known, par-
tially known, novel junction). If the sequencing is deep enough and is a good repre-
sentation of the sample, the spliced junctions should be rediscovered in an RNA-Seq 
experiment. Spliced junction saturation analysis is also implemented in RSeQC. 
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Fig. 3 (a) Pie chart obtained with Qualimap showing the percentages of reads mapped to exonic, 
intronic and intergenic regions of RNA-Seq data from bovine samples. The computation is based 
on a General Feature Format file where all the information about genomic features of the species 
of interest were annotated; in this case, we used Bos taurus UMD v.3.1.83. (b) Gene body coverage 
computed with RSeQC. The plot represents the coverage along the length of all the transcripts 
annotated in the bovine genome, normalized from 1 to 100. The reduction present at the 3´ of the 
transcript indicates a low level of degradation present in the sample
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The introns/exons junction saturation is computed by re-sampling and thus increas-
ing the total number of reads; thereby computing each time the percentage of known 
junctions identified.

This information is dependent on the annotation of the genome, but it is impor-
tant to understand whether the information contained in the data is enough to per-
form differential splicing.

In the case of paired end protocols, the insert size distribution can be useful to 
check if the alignment ran correctly.

This statistic has to be specific for RNA, because to compute the correct insert 
size distribution, the presence of introns when the paired reads are mapped back to 
the genome have to be considered.

If the sequenced fragment has originated from two exons and the splicing site is 
in the middle between the forward and the reverse reads, the real insert size can be 
obtained by subtracting the length of the intron from the distance between the reads' 
mapping site in the genome.

Insert size statistics are implemented in Picard Tool, Qualimap, RNA-SeqQC 
and RSeQC. While the first three extract it directly from the SAM file, RSeQC per-
forms a more complex computation, taking the possible presence of introns between 
two paired reads into consideration.

RSeQC and Qualimap are able to compute an interesting postmapping quality 
control called gene body coverage. This test is useful, especially in cases where 
samples have problems in the quality and integrity of the RNA.

The tools give as output a graph representing the level coverage across the length 
of the transcripts present in the genomes, normalized from 1 to 100 (Fig. 3b).

Qualimap, together with Picard Tools, provides a module specific for RNA 
sequencing and together with RSeQC and RNA-SeqQC represent the most com-
plete tools for postalignment quality control in RNA-Seq data.

RNA-SeqQCs can also perform a multisample comparison providing informa-
tion such as correlations and GC content comparisons among samples.

Some tools are less intuitive, while other packages like Qualimap have a well 
developed graphical interface and provide a complete, well-organized graphical 
output particularly useful for researchers with weak computational skills.

The ideal way to get a complete impression of the data is to combine the results 
from different tools, exploiting the advantages of each of them.

This concept is implemented in a recently developed tool called Quality Control 
for RNA-Seq (QuaCRS) (Kroll et al. 2014). The tool runs FastQC, RNA-SeqQC 
and SeQC and merges results in an easily interpretable and accessible way.

5  Counting

In this step, reads that map under a biological feature of interest are counted in order 
to quantify its expression in a sample. Various tools perform this step. The differ-
ences are few among these types of tools and they are related mainly in the different 
ways of considering reads that overlap more than one feature. The estimation of the 
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expression can be made at different levels for different biological features (gene 
level, transcript level, exonic level), or it can be applied to all the transcripts identi-
fied during de novo mapping.

For example, HTSeq (Anders et al. 2014) and Cufflinks (Trapnell et al. 2013) are 
commonly used tools to perform this step.

6  Normalization

Even if RNA sequencing was initially considered completely immune of biases, 
normalization is still a fundamental step (Wang et al. 2009).

It facilitates the removal of biases and it is necessary in order to obtain accurate 
results during the comparison both within and between samples.

Normalization is tricky and complex in RNA-Seq data, as there are different 
bias types to take into consideration. In RNA-Seq experiments, biases can be of 
two types: within-sample bias that is due mainly to gene length bias and GC 
content bias, and between-sample biases due to the sequencing depth (Dillies 
et al. 2013).

The gene length bias originates because longer transcripts likely generate a 
higher number of fragments and consequently a higher number of reads. Thus, it is 
likely to have a higher level of expression rather than shorter transcripts due to this 
technical problem and not due to a real activation or inactivation of the transcription 
(Zheng et al. 2011; Oshlack and Wakefield 2009).

Similar problems occur in fragments with different GC contents (Risso et al. 
2011).

GC-rich and GC-poor fragments result in being underrepresented in RNA 
sequencing, which leads to biases at the gene expression level (Benjamini and 
Speed 2012).

To make things even more complicated, it has been seen that GC content bias is 
not consistent between samples. It is lane-dependent and probably introduced dur-
ing the library preparation step (Risso et al. 2011).

Until now, it has not been determined which method performs better in normal-
izing for GC content bias.

One of the methods used to account for length bias is the RPKM unit (reads per 
kilobase of exon per million fragments), which divides the discrete counts of the 
reads by the total number of reads sequenced and by the length of the transcript and 
then computes the proportion to one million total reads (Mortazavi et al. 2008). In this 
way, the expression value of a gene is independent on the length of its transcripts.

Various tools are able to correct for this type of bias, like EDASeq (Risso et al. 
2011) and cqn (Hansen et al. 2012) where the GC bias or length bias are included as 
covariates.

The correction for the biases is dependent on the objective of the study.
If the objective is to rank genes within a sample, for example, to identify which 

genes are more active in a specific cell type, the biases that must be checked are 
gene length and GC content.

Computational Methods for Quality Check, Preprocessing and Normalization
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On the other hand, if the experiment is designed to compare gene expressions 
between samples to identify differentially expressed genes, the most influential bias 
to consider is the difference in the library size.

The library size, computed as the total number of reads in a sample, can lead to 
false positives or false negatives during the analysis, as more reads will be assigned 
to each gene if a sample is sequenced to a greater depth.

However, it is also very important to consider that gene length and GC content 
also have an effect in between-sample comparisons; in fact, genes with higher 
counts are more likely to be defined as differentially expressed than genes with 
lower counts.

Cqn and EDASeq have been developed in such a way that they correct first for 
within-sample effect of the GC content and then they correct for between-sample 
bias.

It has been seen that normalization for library size with simple scaling is not 
enough. Together with sequencing depth and gene length, the composition of the 
RNA population has to be considered.

If the majority of genes are highly expressed in one condition compared to the 
other, the results of the analysis will be skewed (Robinson and Oshlack 2010).

More sophisticated normalization methods have been developed to correct for 
differences in library size (Oshlack et al. 2010).

Normalization methods have been tested with different datasets (Dillies et al. 
2013).

The method implemented in the DESeq2 package (Anders and Huber 2010), 
together with trimmed mean of M values (TMM) (Robinson and Oshlack 2010) 
showed good precision and sensibility in false positive rates and power of detection. 
The first methods use scaling factor for each sample, computed as the median of the 
ratio between genes and their respective geometric mean computed across samples, 
while TMM removes the genes that are most expressed and with the highest log 
ratios and using the remaining genes, a scaling factor is computed as the weighted 
mean of log ratios between the sample and a reference.

Other methods are also used with good performances, such as upper quartile 
(Bullard et al. 2010), where gene counts are divided by the upper quartile of the gene 
counts and median where gene counts are divided by the median of the gene counts.

Even if RPKM, as explained earlier, takes into account the gene length, this 
method together with total count (TC), in which the counts of the genes are divided 
by the total number of reads in the sample, is indicated to be ineffective.

The performance of a normalization method is strictly dependent on the dataset. 
In some cases, no differences have been found in the final results between various 
methods (Seyednasrollah et al. 2015).

In general, there is no agreement on which is the best method and it is very 
important to check if the normalization applied worked fine on a dataset. This can 
be achieved by comparing the median and the distribution of gene expression across 
genes. In this way, it is possible to identify batch effect on the samples. We expect 
that after normalization, if the procedure is performed correctly, the distributions 
should have similar medians and distributions across samples. A similar test is 
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provided by NOISeq (Tarazona et al. 2012). This R package compares read distribu-
tions among samples using a sample as a reference, check for presence of GC con-
tent bias and length bias (Fig. 4).

Once the data are correctly normalized and transformed, various exploratory 
analyses can be performed and systems genetic approaches can be applied.

Normalization has less influence in the case of co-expression analysis because 
we focus on the correlations between expression levels of pairs of genes across all 
the samples.

In any case, tools for co-expression analysis suggest normalizing the data and 
applying logarithm-based transformations. For example, WGCNA (Langfelder and 
Horvath 2008) suggests using variance stabilizing transformation of RNA-Seq data 
before proceeding with the analysis.

7  Statistical Analysis

At this point of the pipeline, data appear in a matrix where each entry represents the 
expression level for a gene in one sample.

The normalized matrix can be used as input for the following steps of the analy-
sis: differential expression, co-expression analysis or exploratory analysis like clus-
tering and data visualization.

At this point, the normalized matrix can be treated in the same way as matrices 
originating from microarray technologies.

One difference has to be taken into consideration: values from RNA-Seq data are 
discrete measures because they are based on counts of the reads, while microarray 
data are continuous measures based on intensity values (Fang et al. 2012).
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Fig. 4 NOISeq batch effect exploration graph. A sample is used as a reference and NOISeq com-
pares the distributions and the medians among all the samples. The RNA samples analyzed are 
obtained from bovine cumulus cells, sequenced with Illumina technology using the same library 
preparation. The samples need to be normalized before proceeding with the next step of the analy-
sis. This issue is mainly due to differences in library sizes
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RNA-Seq data are characterized by two properties: the presence of extreme 
 values and heteroscedasticity (relation between variance and mean of gene 
expressions).

For these reasons, data from RNA-Seq data are usually transformed in a logarith-
mic way or with other types of transformation like variance stabilizing transforma-
tion (Lin et al. 2008). Tools developed in a specific way for RNA sequencing do not 
need logarithmic transformation because they already take into account the typical 
distribution of the data counts.

8  Differential expression analysis

DE analysis allows to recognize genes whose expression is related to a trait of inter-
est, such as those genes whose expression changes between conditions with enough 
statistical power. In this step, a statistical test is applied to each gene to determine 
whether we have enough statistical power to reject the null hypothesis that the gene 
is equally expressed in two or more conditions.

Differentially expressed genes provide information about the functions of genes 
under different conditions. From a systems biology perspective, the analysis of a 
set of DE genes can be integrated with information from different omics levels, 
leading to the identification of potential biological pathways involved in a 
process.

In RNA-Seq, this step is one of the most critical, for which a number of methods 
have been developed.

Each method is based on different assumptions regarding the distribution of 
the gene counts and on different statistical models. Some of them can deal with 
multifactorial analysis, others can be applied in experimental designs with no 
replicates, while still others allow for isoform detection and quantification 
(Mazzoni et al. 2015). Above all, the performances are dependent on the structure 
of the data.

Many tools have been tested with both real and simulated data sets. From these 
studies, the performances of the tools are strictly dependent on the properties of the 
dataset and on the experimental design (Zhang et al. 2014; Seyednasrollah et al. 
2015).

The choice of the tool is fundamental. Taking into consideration that there is 
great variability in the maturity (Garber et al. 2011) of available computational 
tools, it is important that the user is aware of the main differences and makes a 
choice considering properties of the data like number of samples, replicates and 
heterogeneity of the dataset (Seyednasrollah et al. 2015).

Tools for differential expression can be classified in non-parametric tools that are 
not based on the assumption of the distribution of the gene counts, and the paramet-
ric tool where gene expression of the genes is assumed to have a specific 
distribution.

Among the non-parametric methods we find NOISeq and SAMSeq.
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Both of them perform very well in terms of control of false positives, but they 
have opposite characteristics: NOISeq is too conservative with a high number of 
replicates, while SAMSeq needs more replicates for a good power of detection and 
its performances are strictly related to the data (Soneson and Delorenzi 2013; 
Seyednasrollah et al. 2015).

Among parametric methods, the best performing tools are DESeq, edgeR 
(Robinson et al. 2010) and BaySeq (Hardcastle and Kelly 2010), which appear to be 
similar in terms of accuracy, control of the number of false positives and sensitivity 
(Zhang et al. 2014; Kvam et al. 2012).

In datasets with small sample size, the best tools turned out to be Limma and 
DESeq.

DESeq proved to be the most conservative, while edgeR has a higher power of 
detection and Limma is the most robust with strong consistency of the results across 
heterogeneous datasets (Seyednasrollah et al. 2015; Soneson and Delorenzi 2013).

DESeq’s successor, DESeq2, has a higher power of detection, but is less precise 
(Seyednasrollah et al. 2015).

BaySeq, based on Bayesian methodology, showed good performances in differ-
ent cases but is strongly dependent on the dataset structure (Seyednasrollah et al. 
2015; Soneson and Delorenzi 2013).

Finally, one of the most prominent tools, Cuffdiff2, has good performances but 
poor power of detection at the gene level (Seyednasrollah et al. 2015; Zhang et al. 
2014).

However, one of the main advantages of Cuffdiff2 is the possibility to compute 
expression changes at the gene and transcript levels.

In the case of complex experimental designs, where more than one variable can 
be correlated to the gene expression levels, the possibility of accounting for those 
variables in the model is very important.

DESeq, DESeq2, edgeR, Limma and NOISeq allow for performing multifacto-
rial analysis (Love et al. 2014; Robinson et al. 2010; Ritchie et al. 2015; Tarazona 
et al. 2012). Thanks to these tools, it is very easy to deal with very complex experi-
mental designs, even for less experienced users.

Typically, the user gives as input the linear model that the tool will fit before 
computing the contrast. The basic model is:

 y ni covariate covariate covariate trait of interest= + + +1 2 _ _  

where yi is the gene normalized gene counts for gene i across all the samples, covari-
ate 1 to n represents potential confounding effects that have to considered during the 
test and the trait of interest is the covariate, which has to be performed for the dif-
ferential expression analysis.

The program will fit many models as the number of genes given in input (i = 1  
to t), where t is the number of genes to be tested.

For DESeq, edgeR and Limma, very extensive explanations of the tools are pro-
vided together with the manuals, making their use and the interpretation of the 
results even easier (Seyednasrollah et al. 2015).
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9  Interpretation of DE Analysis Results

The output file generated by most of the tools from a differential expression analysis 
consists of a list of genes or features followed by different parameters obtained from 
the statistic tests (Fig. 5).

The important parameters that are obtained from a differential expression analy-
sis and that generally are presented in the final results file are the estimated fold 
change, the associated p-value and the p-value adjusted for multiple testing. The 
estimated fold change is the effect size estimate. The effect size estimate represents 
how much the expression of a gene changes due to the condition for which the con-
trast has been computed. Usually, this parameter is in a base 2 logarithmic scale. The 
tools compute also a statistic test that can be, for example, a Walt test, a likelihood 
ratio test or a Bayes statistic in order to obtain a p-value associated to the estimates.

Together with the p-value, the related adjusted p-value is also usually computed. 
The adjusted p-value is the statistic significance after multiple testing corrections. 
Usually the multiple testing is based on false discovery rate, but each tool gives the 
possibility to choose between different methods (Robinson et al. 2010; Anders and 
Huber 2010; Ritchie et al. 2015; Love et al. 2014).

The adjusted p-values give information about the significance of the gene expres-
sion change.

In general, to evaluate the differentially expressed genes, two thresholds should 
be set up; one for the adjusted p-value and another one for the fold change. In this 
way, it is possible to select genes whose change in expression is statistically signifi-
cant and with a certain magnitude.

 Conclusions
In this review, we have summarized all basic steps of the pipeline for RNA-Seq 
data analysis focusing on the steps that allow to check and get rid of the biases 
that can arise from RNA-Seq data.

Fig. 5 DESeq2 results from a differential expression analysis performed on bovine RNA-Seq 
data. BaseMean, mean of normalized counts for all samples; log2FoldChange, estimate of the 
gene expression change for the trait analysed (reported in a log2 scale); lfcSE, standard error asso-
ciated to the estimate; stat, Walt test statistic; p-value, p-values obtained from the Walt test; padj, 
p-values adjusted for multiple testing (Benjamini–Hochberg procedure)
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In order to obtain accurate results, it is really important to remove potential 
sources of biases. The choice of the right tool, as well as the choice on how to iden-
tify problems in the data and to get rid of them, can have big impact on the final 
results.

This choice is not always easy and in order to perform a good analysis, it requires 
good knowledge about the tools available as well as about the RNA-Seq 
technology.

While for microarray analysis, the general standard to record and report 
microarray- based gene expression data has been defined in the MIAME guideline 
(Brazma et al. 2001), until now, no golden standard has been described for RNA- 
Seq data analysis.

One of the objectives of the FAANG project (http://www.faang.org/) is to estab-
lish a standard procedures for core assays, experimental protocols and also for 
RNA-Seq analysis pipeline in animal genomic research field.

In the absence of a commonly accepted standard procedure, the general overview 
presented in this review can help the reader in setting up the analytic pipeline. 
Furthermore, it can help to make the best choice in term of tools to use, thanks to 
the wide description of their characteristic and of the comparison of their 
performances.

In conclusion, this review can be useful for both educational purposes as well as 
for less experienced practitioners of animal genomic research who are dealing with 
RNA-Seq data.
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