37 research outputs found

    Proteomics for the Investigation of Surface-Exposed Proteins in Probiotics

    Get PDF
    Probiotics are commensal microorganisms that are present in the intestinal tract and in many fermented foods and positively affect human health, promoting digestion and uptake of dietary nutrients, strengthening intestinal barrier function, modulating immune response, and enhancing antagonism toward pathogens. The proteosurfaceome, i.e., the complex set of proteins present on the bacterial surface, is directly involved as leading actor in the dynamic communication between bacteria and host. In the last decade, the biological relevance of surface-exposed proteins prompted research activities exploiting the potentiality of proteomics to define the complex network of proteins that are involved in the molecular mechanisms at the basis of the adaptation to gastrointestinal environment and the probiotic effects. These studies also took advantages of the recent technological improvements in proteomics, mass spectrometry and bioinformatics that triggered the development of ad hoc designed innovative strategies to characterize the bacterial proteosurfaceome. This mini-review is aimed at describing the key role of proteomics in depicting the cell wall protein architecture and the involvement of surface-exposed proteins in the intimate and dynamic molecular dialogue between probiotics and intestinal epithelial and immune cells

    Urine Proteomics Revealed a Significant Correlation Between Urine-Fibronectin Abundance and Estimated-GFR Decline in Patients with Bardet-Biedl Syndrome

    Get PDF
    Background:/Aims: Renal disease is a common cause of morbidity in patients with Bardet-Biedl syndrome (BBS), however the severity of kidney dysfunction is highly variable. To date, there is little information on the pathogenesis, the risk and predictor factors for poor renal outcome in this setting. The present study aims to analyze the spectrum of urinary proteins in BBS patients, in order to potentially identify 1) disease-specific proteomic profiles that may differentiate the patients from normal subjects; 2) urinary markers of renal dysfunction. Methods: Fourteen individuals (7 males and 7 females) with a clinical diagnosis of BBS have been selected in this study. A pool of 10 aged-matched males and 10 aged-matched females have been used as controls for proteomic analysis. The glomerular filtration rate (eGFR) has been estimated using the CKD-EPI formula. Variability of eGFR has been retrospectively assessed calculating average annual eGFR decline (ΔeGFR) in a mean follow-up period of 4 years (3-7). Results: 42 proteins were significantly over- or under-represented in BBS patients compared with controls; the majority of these proteins are involved in fibrosis, cell adhesion and extracellular matrix organization. Statistic studies revealed a significant correlation between urine fibronectin (u-FN) (r2=0.28; p<0.05), CD44 antigen (r2 =0.35; p<0.03) and lysosomal alfa glucosidase ( r20.27; p<0.05) abundance with the eGFR. In addition, u-FN (r2 =0.2389; p<0.05) was significantly correlated with ΔeGFR. Conclusion: The present study demonstrates that urine proteome of BBS patients differs from that of normal subjects; in addition, kidney dysfunction correlated with urine abundance of known markers of renal fibrosis

    Surface Layer Protein Pattern of Levilactobacillus brevis Strains Investigated by Proteomics

    No full text
    The outermost constituent of many bacterial cells is represented by an S-layer, i.e., a semiporous lattice-like layer composed of self-assembling protein subunits called S-layer proteins (Slps). These proteins are involved in several processes, such as protecting against environmental stresses, mediating bacterial adhesion to host cells, and modulating gut immune response. Slps may also act as a scaffold for the external display of additional cell surface proteins also named S-layer associated proteins (SLAPs). Levilactobacillus brevis is an S-layer forming lactic acid bacterium present in many different environments, such as sourdough, milk, cheese, and the intestinal tract of humans and animals. This microorganism exhibits probiotic features including the inhibition of bacterial infection and the improvement of human immune function. The potential role of Slps in its probiotic and biotechnological features was documented. A shotgun proteomic approach was applied to identify in a single experiment both the Slps and the SLAPs pattern of five different L. brevis strains isolated from traditional sourdoughs of the Southern Italian region. This study reveals that these closely related strains expressed a specific pattern of surface proteins, possibly affecting their peculiar properties

    Proteomics pattern associated with gingival oral squamous cell carcinoma and epulis: A case analysis

    No full text
    Objectives: Oral squamous cell carcinoma (OSCC) is the most common epithelial malignant neoplasm affecting the oral cavity. OSCC can mimic oral lesions of inflammatory origin with benign features, often leading to delay in diagnosis and treatment. Early detection is important to greatly increase the chances of a successful treatment. The present study reports a proteomic analysis of a gingival oral squamous cell carcinoma (G-OSCC) and an epulis. Materials and methods: Normal mucosae tissue, G-OSCC tissue, and epulis tissue as a comparative sample of benign nature were collected and immediately frozen in liquid nitrogen. Tissue-extracted proteins were separated by two-dimensional gel electrophoresis and subjected to image analysis. Proteins that showed a significant difference in the expression level in the G-OSCC tissue were identified by the nano-ESI-HPLC-MS/MS experiment and database searchi. Results and conclusion: The proteomic analysis of G-OSCC tissue enabled the identification of proteins that are potentially related to the disease; these proteins can be considered as signature molecules for diagnostic and prognostic tumor markers

    Paraprobiotics: A New Perspective for Functional Foods and Nutraceuticals

    No full text
    Probiotics are live microorganisms that confer health benefits on the host. However, in recent years, several concerns on their use have been raised. In particular, industrial processing and storage of probiotic products are still technological challenges as these could severely impair cell viability. On the other hand, safety of live microorganisms should be taken into account, especially when administered to vulnerable people, such as the elderly and immunodeficient individuals. These drawbacks have enhanced the interest toward new products based on non-viable probiotics such as paraprobiotics and postbiotics. In particular, paraprobiotics, defined as “inactivated microbial cells (non-viable) that confer a health benefit to the consumer,” hold the ability to regulate the adaptive and innate immune systems, exhibit anti-inflammatory, antiproliferative and antioxidant properties and exert antagonistic effect against pathogens. Moreover, paraprobiotics can exhibit enhanced safety, assure technological and practical benefits and can also be used in products suitable for people with weak immunity and the elderly. These features offer an important opportunity to prompt the market with novel functional foods or nutraceuticals that are safer and more stable. This review provides an overview of central issues on paraprobiotics and highlights the urgent need for further studies aimed at assessing safety and efficacy of these products and their mechanisms of action in order to support decisions of regulatory authorities. Finally, a definition is proposed that unambiguously distinguishes paraprobiotics from postbiotics

    The length of a single turn controls the overall folding rate of “Three-Fingered” snake toxins

    No full text
    International audienceSnake curaremimetic toxins are short all-β\beta proteins, containing several disulfide bonds which largely contribute to their stability. The four disulfides present in snake toxins make a “disulfide β\beta-cross”- fold that was suggested to be a good protein folding template. Previous studies on the refolding of snake toxins (Ménez, A. et al. (1980) Biochemistry 19, 4166-4172) showed that this set of natural homologous proteins displays different rates of refolding. These studies suggested that the observed different rates could be correlated to the length of turn 2, one out of five turns present in the toxins structure and close to the “disulfide β\beta-cross”. To demonstrate this hypothesis, we studied the refolding pathways and kinetics of two natural isotoxins, toxin α\alpha (Naja nigricollisNaja\ nigricollis) and erabutoxin b (Laticauda semifasciataLaticauda\ semifasciata), and two synthetic homologues, the α\alpha mutants, α\alpha60 and α\alpha62. These mutants were designed to probe the peculiar role of the turn 2 on the refolding process by deletion or insertion of one residue in the turn length that reproduced the natural heterogeneity at that locus. The refolding was studied by electrospray mass spectrometry (ESMS) time-course analysis. This analysis permitted both the identification and quantitation of the population of intermediates present during the process. All toxins were shown to share the same sequential scheme for disulfide bond formation despite large differences in their refolding rates. The results presented here demonstrate definitely that no residues except those forming turn 2 accounted for the observed differences in the refolding rate of toxin

    Inactivation of ccpA and aeration affect growth, metabolite production and stress tolerance in Lactobacillus plantarum WCFS1

    No full text
    The growth of Lactobacillus plantarum WCFS1 and of its Delta ccpA ery mutant, WCFS1-2, was compared in batch fermentations in a complex medium at controlled pH (6.5) and temperature (30 degrees C) with or without aeration, in order to evaluate the effect of ccpA inactivation and aeration on growth, metabolism and stress resistance. Inactivation of ccpA and, to a lesser extent, aeration, significantly affected growth, expression of proteins related to pyruvate metabolism and stress, and tolerance to heat, oxidative and cold/starvation stresses. The specific growth rate of the mutant was ca. 60% of that of the wild type strain. Inactivation of ccpA and aerobic growth significantly affected yield and production of lactic and acetic acid. Stationary phase cells were more stress tolerant than exponential phase cells with little or no effect of inactivation of ccpA or aeration. On the other hand, for exponential phase cells inactivation of ccpA impaired both heat stress and cold/starvation stress, but increased oxidative stress tolerance. For both strains, aerobically grown cells were more tolerant of stresses. Evidence for entry in a viable but non-culturable status upon prolonged exposure to cold and starvation was found. Preliminary results of a differential proteomic study further confirmed the role of ccpA in the regulation of carbohydrate catabolism and class I stress response genes and allow to gain further insight on the role of this pleiotropic regulator in metabolism and stress. This is the first study in which the impact of aerobic growth on stress tolerance of L. plantarum is evaluated. Although aerobic cultivation in batch fermentations does not improve growth it does improve stress tolerance, and may have significant technological relevance for the preservation of starter and probiotic cultures
    corecore