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Probiotics are commensal microorganisms that are present in the intestinal tract and

in many fermented foods and positively affect human health, promoting digestion and

uptake of dietary nutrients, strengthening intestinal barrier function, modulating immune

response, and enhancing antagonism toward pathogens. The proteosurfaceome, i.e.,

the complex set of proteins present on the bacterial surface, is directly involved as leading

actor in the dynamic communication between bacteria and host. In the last decade, the

biological relevance of surface-exposed proteins prompted research activities exploiting

the potentiality of proteomics to define the complex network of proteins that are

involved in the molecular mechanisms at the basis of the adaptation to gastrointestinal

environment and the probiotic effects. These studies also took advantages of the recent

technological improvements in proteomics, mass spectrometry and bioinformatics that

triggered the development of ad hoc designed innovative strategies to characterize

the bacterial proteosurfaceome. This mini-review is aimed at describing the key role

of proteomics in depicting the cell wall protein architecture and the involvement of

surface-exposed proteins in the intimate and dynamic molecular dialogue between

probiotics and intestinal epithelial and immune cells.

Keywords: proteomics, probiotics, proteosurfaceome, surface-exposed proteins, S-layer proteins, moonlighting

proteins, immunomodulation

INTRODUCTION

Probiotics are commensal microorganisms that are present in the intestinal tract and in many
fermented foods, and are defined as “live microorganisms that, when administered in adequate
amounts, confer a health benefit on the host” (1). Most probiotics are Gram-positive bacteria,
mainly lactic acid bacteria (LAB), and Bifidobacteria (2). More recently, Propionibacterium
freudenreichii, a beneficial bacterium traditionally used as a cheese ripening starter, has been
recognized to exhibit probiotic abilities, some of these due to the production of nutraceuticals
and beneficial metabolites (3). The mechanisms by which probiotics positively affect human health
include promotion of digestion and uptake of dietary nutrients, strengthening of intestinal barrier
function, modulation of immune response and enhancement of antagonism toward pathogens,
either by producing antimicrobial compounds or through competition for mucosal binding
sites (4, 5).
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Surface-exposed proteins constitute the first-line of contact
between bacteria and host being leading actors in this complex
interplay as they directly interact with epithelial and immune
cells (6). This interaction could lead to the inhibition or activation
of key signaling pathways in the intestinal cells involving
nuclear factor-κB (NFκB) and mitogen-activated protein kinases
(MAPKs), and influencing the regulation of downstream
pathways such as the secretion of cytokines (chemokines
and interleukins) responsible for the immunomodulation or
antibacterial peptides (defensins). The activation of these
cascades prompts physiological modifications (increase of mucin
secretion, changes in the surface properties, rearrangement of the
tight junctions, etc.) and changes in genetic expression that could
affect cell proliferation and survival (7–9).

The in-depth analysis of the proteosurfaceome, defined as
“the proteinaceous subset of the surfaceome found at the cell
wall and totally or partially exposed on the external side of
the cell membrane,” represents a crucial point to elucidate
molecular mechanisms underlying host/probiotic crosstalk (10,
11). In general, sorting of bacterial proteins to the cell surface
is governed by the presence or absence of signal peptides which
direct them to the protein export machinery thus allowing their
migration to bacterial surface, and surface-retention domains
responsible for their anchoring to cell wall or cytoplasmic
membrane (12). Surface proteins can be mainly divided in four
groups: (i) proteins anchored to the cytoplasmic membrane
by hydrophobic transmembrane domain(s) (integral membrane
proteins, IMP), (ii) lipoproteins which are covalently attached
to membrane lipids after cleavage of a signal peptide by signal
peptidase II, (iii) proteins containing C-terminal LPXTG-like
motif and covalently attached to peptidoglycan by sortases,
and (iv) non-covalently bound proteins which are associated to
the cell wall through weak interactions (van der Waals forces,
hydrogen or ion bonds) taking advantage of conserved structural
domains (LysM proteins, WXL proteins, GW proteins, proteins
with choline binding domains). Some bacteria can also show
supramolecular structures, formed by the assembly of specific
protein subunits on the cell envelope, such as flagella, mainly
involved in cell motility, and pili or fimbriae, mainly involved
in cell adhesion, aggregation, and immunomodulation (10, 11,
13). Furthermore, in several bacterial species (Lactobacillus
acidophilus, Lactobacillus helveticus, P. freudenreichii, etc.) the
outermost constituent of the cell wall is represented by a
S-layer that is a semiporous proteinaceous crystalline array
composed of self-assembling (glyco)protein subunits called S-
layer proteins (SLPs) which act as a scaffold for non-covalently
attached secreted proteins (also named S-layer associated
proteins, SLAPs). SLPs are involved in several processes including
maintaining cell shape, acting as molecular sieves, serving as
binding sites, protecting against environmental stresses and
mediating bacterial adhesion and gut immune response (14,
15). Noteworthy, cytoplasmic housekeeping proteins (metabolic
enzymes, molecular chaperones, translational elongation factors,
ribosomal proteins, etc.) have been identified in bacterial surface
proteomes. Such proteins, defined as anchorless proteins or
moonlighting proteins, display different, seemingly unrelated,

functions in different cell locations, and lack any extra-
cytoplasmic sorting sequence or binding domain, so that non-
canonical secretion pathways have been hypothesized (16, 17).

Subcellular localization of bacterial proteins has been
postulated by several bioinformatics tools mainly based on
predictive algorithms. The most widely used tools are PSORTb
v3.0 server that allows to obtain subcellular localization
prediction on the basis of a multi-component approach including
different modules such as SCL-BLAST for homology-based
prediction, HMMTOP transmembrane helix prediction tool and
a signal peptide identification tool (18, 19) and SignalP server,
that predicts the presence and location of signal peptide cleavage
sites in amino acid sequences from prokaryotes and eukaryotes
(20). Prediction of transmembrane-spanning domains (helices)
in IMP could be carried out by TMHMM v2.0 (21). Prediction
of non-classically secreted proteins (such as moonlighting
proteins) could be achieved by SecretomeP server (22) and
MoonProt (23).

In the last decades, proteomics significantly contributed to
depict an overall picture of the proteosurfeoceome through the
identification of hundreds of proteins in a single analysis. In fact,
this approach provided direct information on protein localization
and topology, thus corroborating the bioinformatics prediction
with experimental evidence, and allowed the identification of
moonlighthing proteins, “unexpectedly” present on cell surface.
More importantly, as the proteosurfaceome is a highly dynamic
entity, tightly modulated by the host/bacteria molecular dialogue,
proteomics represent the most suitable tool to monitor the wide
reorganization of the surface proteins induced by either gastro
intestinal tract (GIT) environment or other growth conditions,
that could modulate the probiotic functionalities.

However, the proteomic analysis of these proteins
proved to be a challenging task due to their low abundance
and hydrophobicity. First generation proteomic strategies
integrated protein extraction from subcellular fractions, two
dimensional electrophoresis (2-DE) and mass spectrometry,
i.e., Matrix Assisted Laser Desorption Ionization—Time of
Flight Mass Spectrometry (MALDI-TOF-MS) or nano-liquid
chromatography coupled to tandem mass spectrometry (LC-
MS/MS) and usually led to the identification of a limited number
of surface proteins as these are hardly amenable to 2-DE analysis.
The need to overcome these experimental drawbacks successively
prompted the design of sophisticated strategies that selectively
targeted surface proteins either by proteases digestion (shaving
procedures) or biotin labeling (protein biotinylation procedures)
of intact cells (24). These approaches exploited technological
advancements in mass spectrometry and proteomics that allowed
the development of gel-free proteomic strategies (also named
shotgun proteomics) based on the direct analysis of peptides
obtained from the tryptic digestion of the entire proteome
by LC-MS/MS and Ge-LC-MS/MS approaches that include
a preliminary SDS-PAGE fractionation step of the extracted
proteins (25) (Figure 1).

This mini-review is aimed at describing both methods applied
in the last years to define the bacterial proteosurfaceome and
proteomic studies that significantly contributed in depicting the
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FIGURE 1 | Proteomic strategies generally applied in the analysis of surface-exposed proteins.

cell wall protein architecture and the involvement of surface-
exposed proteins in the intimate and dynamicmolecular dialogue
between probiotics and host.

PROTEOMIC METHODS FOR THE ANALYIS
OF SURFACE-EXPOSED PROTEINS

Protocols for Surface Protein Extraction
The analysis of surface proteins of Gram positive bacteria takes
advantage of the cell envelope structure consisting of a cross-
linked peptidoglycan layer. Cell wall degradation of intact cells
is carried out for a short time (30–60min) using enzymes
such as lysozyme, mutanolysin (glycosidases), and/or lysostaphin
(endopeptidase) in a buffer containing protease inhibitors and
high sugar concentrations to create an osmotic pressure in
order tomaintain protoplast integrity and prevent contamination
of cytoplasmic proteins. Surface proteins contained in the
supernatants are recovered by centrifugation, precipitated,
separated by 2-DE, and identified by mass spectrometry (26–
29) (Figure 1). Denaturating agents (urea, guanidine-HCl, SDS
buffers) have been also used to extract non-covalently bound
surface proteins. Different protocols tailored to specific bacterial
features have been proposed to ameliorate protein recovery and
mass spectrometric analyses (26, 30, 31).

Surface proteins from S-layer forming bacteria are usually
extracted using 5M lithium chloride (LiCl) solutions thus
breaking the hydrogen bonds that stabilize these supramolecular
structures (32). More recently, a modified LiCl extraction
protocol has been set up by Johnson et al. (33) to specifically
separate the highly abundant SLPs from the less abundant
SLAPs, exploiting their different solubility in 1M LiCl solution,

and applied to study SLAPs isolated from different probiotic
bacteria (34–36).

As to Gram negative bacteria, classical methods for the
extraction of surface exposed proteins take into account
the peculiar features of their cell-envelope and include the
subfractionation of outer membrane, cytoplasmicmembrane and
periplasmic proteins. Commonly, inner and outer membrane
vesicles are prepared by lysozyme-EDTA lysis or French press
lysis of bacteria, separated by density centrifugation using a
sucrose gradient and analyzed by proteomics (37, 38).

Cell Shaving Strategy
The concept underlying this innovative strategy is that, regardless
of anchoringmechanisms, surface exposed protein fragments can
be selectively released through a limited proteolytic digestion
step carried out on intact bacterial cells. The “shaved” peptides
can be then separated from the whole cells by centrifugation
and analyzed by shotgun proteomics thus achieving protein
identification (39). Trypsin is the proteolytic enzyme more
often used in these experiments, as lysine and arginine residues
are widely represented in protein sequences and often easily
accessible to the enzyme (Figures 1,2A).

In order to rule out osmotic shock and contamination of
cytoplasmic proteins, bacterial cells are suspended in an isotonic
buffer (obtained through the addition of sucrose or arabinose)
and protease digestion is carried out for a short time (15–30min)
to preserve cell integrity. However, the limited proteolysis could
produce high molecular weight protein fragments which are not
amenable for LC-MS/MS analyses and a further extensive tryptic
digestion step (18 hs) carried out on the shaved peptides has been
included in optimized protocols (40, 41).
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FIGURE 2 | Workflows of ad hoc designed strategies for selectively targeting surface-exposed proteins. (A) Cell shaving strategies based on a limited proteolytic

digestion step of intact bacterial cells in order to release surface exposed protein fragments. (B) Labeling strategies based on biotinylation of surface-exposed proteins

of intact bacterial cells in order to achieve their purification by affinity chromatography.

The cell shaving approach allows a comprehensive description
of the bacterial proteosurfaceome and, as trypsin molecules could
diffuse into the cell wall and interact with membrane and cell
wall embedded proteins, a single experiment can provide the
simultaneous identification of IMP, lipoproteins, LPXTG-
proteins, non-covalently bound proteins, moonlighting proteins
(40). Moreover, as the procedure selectively identifies peptides
generated from surface-exposed domains, this methodology
can contribute to refine the protein topology derived from
bioinformatics by matching prediction and experimental
data (39).

The method was conceived to identify potential targets of
drugs and novel candidates for vaccines, and applied to study
Streptococcus pyogenes, leading to the identification of 68 surface-
associated proteins, one of which was validated in mice as a
potential vaccine candidate (39, 42).

This protocol is particularly suitable for the analysis of Gram
positive bacteria, due to their thick and rigid cell wall that
is less prone to lysis during treatments, and comprehensive

proteomic studies have been performed on several probiotics
including Lactococcus lactis (43), Bifidobacterium animalis
(44), Lactobacillus rhamnosus (45), P. freudenreichii (46, 47),
and food pathogens like Staphylococcus aureus (48–50) and
Listeria monocytogenes (51, 52). On the other hand, the
cell shaving method has been applied for the analysis of
surface proteins of Gram negative bacteria such as Escherichia
coli (53) and Salmonella enterica (54), even if their cell
envelope can be more easily damaged thus causing cytoplasmic
protein contamination.

Labeling of Surface-Exposed Proteins
These approaches rely on labeling strategies that specifically
target surface proteins of intact bacterial cells. A first approach
is based on the labeling of surface-exposed proteins with
fluorescent CyDye reagents. After the labeling step, a complete
cell lysis is carried out and the proteins are separated by 2-DE.
Labeled surface proteins are highlighted by fluorescence imaging
and identified using mass spectrometry (46, 55) (Figure 1).
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A more sophisticated approach uses ad hoc designed biotin
containing reagents to target surface proteins and suitably
exploits the highly specific and stable non-covalent interaction
between avidin [or the bacterial protein streptavidin (SA)] and
biotin (56). As the biotinylation reagents can penetrate the
peptidoglycan structure, proteins that are buried within the cell
wall can be labeled. After a cell lysis step, labeled surface proteins
are separated from non-labeled cytoplasmic proteins by SA
affinity chromatography. The intact surface proteins thus purified
could be identified using both classical proteomic approaches
(including 2-DE) and Ge-LC-MS/MS or shotgun proteomics
(27, 57–59) (Figures 1,2B).

The chemical features of the labeling reagent have a crucial
role in this protocol. The biotin moiety is at the basis of the
affinity purification step and several spacers can be linked to
the valeric acid carboxylic group of biotin and carry functional
groups (such as N-hydroxysuccinimide, NHS) that covalently
link to primary amino groups of proteins (ε-amino group of
lysine residues and N-terminal α-amine group) (60).

The elution of biotinylated proteins from SA-coated resin
could be severely hampered by the high stability of the biotin-
SA complex. To overcome this problem, cleavable spacers
that include a disulphide bridge in their structure have
been introduced thus allowing to easily and completely elute
the biotinylated proteins by using reducing reagents such
as dithiotreitol. Sulpho-NHS-SS-biotin is nowadays the most
commonly used reagent in proteomic studies. The negative
charge of sulphonate group present on the NHS ring makes this
molecule water soluble and unable to cross the cell membrane
thus drastically reducing the contamination of cytoplasmic
proteins (60).

This method is suitable to study the proteosurfaceome of both
Gram-positive and Gram-negative bacteria but, unfortunately,
up to now, it has been mainly applied to analyze the surface
proteins of pathogens such as S. aureus (27, 57, 61), L.
monocytogenes (52), E. coli (62). We can foresee that in the near
future, this strategy will be also applied to the characterization
of the proteosurfaceome of probiotics thus contributing to the
advancement of knowledge in this field.

PROTEOMICS FOR STUDYING
SURFACE-EXPOSED PROTEINS
IN PROBIOTICS

The high biological relevance of surface-exposed proteins in
the dynamic crosstalk between bacteria and their environment
prompted the design of dedicated proteomic strategies useful for
investigating the molecular mechanisms of adaptation to GIT
environment, adhesion, colonization, and immunomodulation,
key features for the probiotic action (63–65). First studies
on this topic, integrating proteomics and biochemical assays,
confirmed the presence of moonlighting proteins on the
surface of Lactobacilli and Bifidobacteria and their ability to
bind extracellular matrix components (plasminogen, fibronectin,
mucin) and adhere to GIT (28, 66–72). More recently, a
comparative proteomic study performed on potentially probiotic

strains of Lactobacillus pentosus led to identify moonlighting
proteins in the cell-wall proteome and to correlate their
abundance level to strain specific adhesion capacities to
mucus (73).

Importantly, the adaptation to GIT can enhanced probiotic
features as, for instance, bile stress can be a signal of gut entry for
bacteria, which triggers the re-organization of the surface protein
pattern resulting in improved adhesion ability in the new niche.
In fact, the abundance of surface-exposed Clp proteins (ClpB,
ClpE), chaperone (DnaK), and enzymes involved in carbohydrate
metabolism was enhanced in L. rhamnosus GG after exposure to
bile stress. The abundance of some of these enzymes increased in
the proteosurfaceome but not in the proteome, thus suggesting
a sort of protein relocalization triggered by bile (55). Changes
in the expression profile of moonlighting proteins (in particular
ribosomal proteins and glycolytic enzymes) promoted by bile
were also observed in B. animalis subsp. lactis and B. longum
(29, 74).

Several factors supplied with diets such as plant polyphenols
(resveratrol, ferulic acid, etc.) and prebiotic carbohydrates
(raffinose, fructooligosaccharides, etc.) could influence
the surface protein profile of probiotics. These molecules
improved the adhesive capabilities to mucin and HT-29 cells
of L. acidophilus NCFM probably by modulating biosynthesis
and/or secretion of moonlighting proteins (75–77).

Proteomics also contributed to assess that the surface protein
pattern is strain specific. In fact, a trypsin shaving approach
applied to compare the proteosurfaceomes of L. rhamnosus GG
and the closely related dairy strain Lc705, led to the identification
of 102 and 198 proteins anchored to the surface trough different
mechanisms (IMP, LPXTG proteins, lipoproteins, C-term and
N-Term anchored proteins and moonlighting proteins). Strain
specific differences were mainly associated to moonlighting
proteins and could be related to the adaptation to their ecological
niches and probiotic functions (response to bile, hydrolysis
of casein, immunostimulation, pathogen exclusion) (45). In
addition, SpaC and SpaA proteins, involved in the assembly of
pilus structures, were identified only in the proteome of GG and
related to adhesion properties and prolonged residence in the
GIT of this strain compared to Lc705 (78).

Similarly, a pilin-like protein was identified in a L. lactis strain
able to adhere to Caco-2 cells and the synthesis of pili was
confirmed by immunoblotting detection and electron and atomic
force microscopy observations (43). Several proteins potentially
involved in adhesion, including the pilus structure proteins
FimA and FimB, were also identified in a B. animalis ssp lactis
strain (44).

S-layer proteins (SLPs) and S-layer associated proteins
(SLAPs) have a key role in GIT adaptation and
immunomodulation processes, as highlighted by functional
studies integrated by proteomics. First studies performed on L.
acidophilus NCFM, a S-layer forming microorganism, showed
the involvement of the main SLP (SlpA) in adhesion to Caco2
cells (79) and dendritic cells (DCs) immunomodulation (80).
Recently, using an optimized extraction protocol, 37 SLAPs of
L. acidophilus NCFM were identified and most of them were
predicted to be extracellular proteins while only four proteins
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were potentially moonlighting proteins. The protein SLAP
LBA1029 contributed to a pro-inflammatory response in murine
DCs (inducing the expression of TNF-α), thus indicating that
SLAPs may impart immunological properties to microbes (33).
The surface-exposed proteins of L. acidophilus NCFM were also
characterized by Celebioglu and Svensson (35), leading to the
identification of a higher number of moonlighting proteins.
In addition, a quantitative proteomic study performed using
more sophisticated mass spectrometric approaches, defined a
detailed catalog of the L. acidophilus NCFM surface proteins
containing 276 SLAPs and demonstrated that the cell surface
proteome was modulated by growth phase. This feature could
be exploited to optimize probiotic actions and enhance their
delivery, persistence, and general efficacy (36).

The presence or absence of the S-layer has a clear impact
on the composition and complexity of proteosurfaceome of
different lactobacilli. In fact, a proteomic study led to identify
numerous SLAPs in proteosurfaceome of S-layer-forming strains
of L. acidophilus, L. helveticus, L. crispatus, L. amylovorus, and
L. gallinarum. On the other hand, the few proteins isolated with
LiCl treatment of the non-S-layer forming strains of L. delbrueckii
subsp. bulgaricus and L. casei were mostly intracellular proteins,
likely presented extracellularly due to cell lysis in stationary
phase. These findings also confirmed the role of SLAPs as integral
components of S-layer (34).

Recently surface proteins from P. freudenreichii, a S-layer
forming bacterium, have been characterized by using three
complementary proteomic methods (guanidine hydrochloride
extraction, cell shaving and fluorescent labeling with CyDye
coupled to mass spectrometric analyses) and their ability in
enhancing the production of the anti-inflammatory cytokines
IL6 and IL10 by human immune cells was assessed (46).
Furthermore, a study combining comparative genomics,
transcriptomics and surface proteomics, coupled with gene
inactivation, was performed on 23 strains of P. freudenreichii
with different anti-inflammatory potential. Results evidenced the

involvement of SlpB and SlpE in the release of IL10 by human
immune cells and demonstrated that different combinations
of surface and cytoplasmic proteins, depending on the strain,
exerted a pleiotropic effect on the anti-inflammatory properties
(47). Finally, do Carmo et al. demonstrated a direct role of SlpB
in the adhesion to HT-29 cells and reported that the inactivation
of slpB gene caused profound modifications in whole cell and
surface proteomes as well as bacterial stress tolerance (81, 82).

The reported achievements clearly assess the ability of
proteomics in investigating the structural features of different
classes of surface proteins and its role in elucidating the
mechanisms of bacteria/host interaction.

CONCLUDING REMARKS

In the past few years, proteomics proved to be the method
of choice to investigate surface architecture of bacteria cells,
contributing to define protein location and topology, and to deal
with the extremely dynamic and constantly renewing nature of
proteosurfaceome that is deeply affected by the environment.
The exploitation of technological innovations in proteomics and
mass spectrometry has improved the knowledge in the probiotics
field. This review displays the essential role of proteomics in
the elucidation of the molecular mechanisms of the probiotic
action and the identification of key actors of the probiotics/host
molecular dialogue, thus potentially providing new tools for
selecting strains with specific healthy promoting functions.
Future research perspectives should include the analysis of post-
translational modifications of surface proteins (glycoproteomics,
phosphoproteomics, etc.), and the investigation of their effects in
the interaction with host epithelial cells.
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