201 research outputs found

    CLU "in and out": looking for a link.

    Get PDF
    Cancer cells need to interact synergistically with their surrounding microenvironment to form a neoplasm and to progress further to colonize distant organs. The microenvironment can exert profound epigenetic effects on cells through cell-derived interactions between cells, or through cell-derived factors deposited into the microenvironment. Tumor progression implies immune-escaping and triggers several processes that synergistically induce a cooperation among transformed and stromal cells, that compete for space and resources such as oxygen and nutrients. Therefore, the extra cellular milieu and tissue microenvironment heterotypic interactions cooperate to promote tumor growth, angiogenesis, and cancer cell motility, through elevated secretion of pleiotropic cytokines and soluble factors. Clusterin (CLU), widely viewed as an enigmatic protein represents one of the numerous cellular factors sharing the intracellular information with the microenvironment and it has also a systemic diffusion, tightly joining the "In and the Out" of the cell with a still debated variety of antagonistic functions. The multiplicity of names for CLU is an indication of the complexity of the problem and could reflect, on one hand its multifunctionality, or alternatively could mask a commonality of function. The posited role for CLU, further supported as a cytoprotective prosurvival chaperone-like molecule, seems compelling, in contrast its tumor suppressor function, as a guide of the guardians of the genome (DNA-repair proteins Ku70/80, Bax cell death inducer), could really reflect the balanced expression of its different forms, most certainly depending on the intra- and extracellular microenvironment cross talk. The complicated balance of cytokines network and the regulation of CLU forms production in cancer and stromal cells undoubtedly represent a potential link among adaptative responses, genomic stability, and bystander effect after oxidative stresses and damage. This review focuses on the tumor-microenvironment interactions strictly involved in controlling local cancer growth, invasion, and distant metastases that play a decisive role in the regulation of CLU different forms expression and release. In addition, we focus on the pleiotropic action of the extracellular form of this protein, sCLU, that may play a crucial role in redirecting stromal changes, altering intercellular communications binding cell surface receptors and contributing to influence the secretion of chemokines in paracrine and autocrine fashion. Further elucidation of CLU functions inside and outside ("in and out") of cancer cell are warranted for a deeper understanding of the interplay between tumor and stroma, suggesting new therapeutic cotargeting strategies

    CLU "in and out": looking for a link

    Get PDF
    Cancer cells need to interact synergistically with their surrounding microenvironment to form a neoplasm and to progress further to colonize distant organs. The microenvironment can exert profound epigenetic effects on cells through cell-derived interactions between cells, or through cell-derived factors deposited into the microenvironment. Tumor progression implies immune-escaping and triggers several processes that synergistically induce a cooperation among transformed and stromal cells, that compete for space and resources such as oxygen and nutrients. Therefore, the extra cellular milieu and tissue microenvironment heterotypic interactions cooperate to promote tumor growth, angiogenesis, and cancer cell motility, through elevated secretion of pleiotropic cytokines and soluble factors. Clusterin (CLU), widely viewed as an enigmatic protein represents one of the numerous cellular factors sharing the intracellular information with the microenvironment and it has also a systemic diffusion, tightly joining the "In and the Out" of the cell with a still debated variety of antagonistic functions. The multiplicity of names for CLU is an indication of the complexity of the problem and could reflect, on one hand its multifunctionality, or alternatively could mask a commonality of function. The posited role for CLU, further supported as a cytoprotective prosurvival chaperone-like molecule, seems compelling, in contrast its tumor suppressor function, as a guide of the guardians of the genome (DNA-repair proteins Ku70/80, Bax cell death inducer), could really reflect the balanced expression of its different forms, most certainly depending on the intra- and extracellular microenvironment cross talk. The complicated balance of cytokines network and the regulation of CLU forms production in cancer and stromal cells undoubtedly represent a potential link among adaptative responses, genomic stability, and bystander effect after oxidative stresses and damage. This review focuses on the tumor-microenvironment interactions strictly involved in controlling local cancer growth, invasion, and distant metastases that play a decisive role in the regulation of CLU different forms expression and release. In addition, we focus on the pleiotropic action of the extracellular form of this protein, sCLU, that may play a crucial role in redirecting stromal changes, altering intercellular communications binding cell surface receptors and contributing to influence the secretion of chemokines in paracrine and autocrine fashion. Further elucidation of CLU functions inside and outside ("in and out") of cancer cell are warranted for a deeper understanding of the interplay between tumor and stroma, suggesting new therapeutic cotargeting strategies

    Carnitine palmitoyltransferase I in human carcinomas: a novel role in histone deacetylation?

    Get PDF
    Carnitine palmitoyl transferase I (CPT1) catalyzes the transport of long-chain fatty acids into mitochondria for beta-oxidation. A link between CPT1 and apoptosis has been suggested on the basis of several experimental data. Nevertheless, results are contradictory about the effective role of CPT1 in cell survival control and cancer development. Conversely, Fatty acid synthase (FAS) enzyme, required for the synthesis of fatty acids, is found over-expressed in tumors and inhibition of FAS triggers apoptosis in human cancer cells. We have studied the tumor-specific modulation of CPT1 and FAS in human colorectal cancer (n = 11) and breast carcinomas (n = 24). CPT1 was significantly decreased in the cytoplasm of tumoral samples (p < or = 0.04), whereas FAS was increased (p < or = 0.04). A striking CPT1 nuclear localization was evident in the tumors (p < or = 0.04). In the nuclear environment the protein would modulate the levels of acetyl/acyl-CoA implicated in the regulation of gene transcription. At this purpose, we performed in vitro experiments using epithelial neoplastic (MCF-7, Caco-2, HepG2 cells) and non neoplastic cell lines (MCF-12F) confirming a nuclear localization of CPT1 protein exclusively in neoplastic cells. Moreover histone deacetylase (HDAC) activity showed significantly higher levels in nuclear extracts from neoplastic than from control cells. HDAC1 and CPT1 proteins coimmunoprecipitated in nuclear extracts from MCF-7 cells. The treatment with HDAC inhibitors such as trichostatin A and butyrate significantly decreased nuclear expression of CPT1 and its bond to HDAC1. We also identified the existence of CPT1A mRNA transcript variant 2 in MCF-7, beside to the classic isoform 1. The peculiar localization of CPT1 in the nuclei of human carcinomas and the disclosed functional link between nuclear CPT1 and HDAC1 propose a new role of CPT1 in the histonic acetylation level of tumors

    Absent ductus venosus: case series from two tertiary centres

    Get PDF
    INTRODUCTION: Congenital absence of the ductus venosus (ADV) is a rare vascular anomaly often associated with fetal cardiac and extracardiac anomalies, aneuploidies, and hydrops. The prognosis depends on the patterns of abnormal venous circulation, on the associated malformations and on chromosomal aberrations. METHODS: We performed a retrospective audit of all consecutive cases with ADV referred in our centres and analysed the outcomes. RESULTS: A total of six cases with prenatally diagnosed ADV were identified. The gestational age at diagnosis ranged from 15 to 35 weeks. Karyotyping was performed in all cases. Normal karyotype was found in five out of the six cases. Overall, four neonates survived at 28 days follow-up. The other two died 48 h after delivery: both of them had extrahepatic ADV. DISCUSSION: Absence of the ductus venosus may be compatible with normal fetal development without relevant disturbance of circulation and oxygenation independently from type of abnormal venous circulation

    The expression and the nuclear activity of the caretaker gene Ku86 are modulated by somatostatin

    Get PDF
    Somatostatin is a peptide hormone that exerts antisecretory and antiproliferative activities on some human tumors. The Ku70/86 heterodimer acts as regulatory subunit of the DNA dependent protein kinase and its DNA binding activity mediates DNA double strands breaks repair that is crucial to maintain the genetic integrity of the genome. The activation of the heterodimer regulates cell cycle progression and the activity of nuclear transcription factors involved in DNA replication and cell proliferation. Moreover Ku86 behaves as a receptor for the growth inhibitory tetradecapeptide, somatostatin. Herein we report that somatostatin treatment to a colon carcinoma cell line (Caco-2) inhibits cell growth and, at same time, strongly modulates the activation of Ku70/86 heterodimer and the levels of Ku86 in the nucleus by increasing its specific mRNA level. Our findings are consistent with the hypothesis that somatostatin controls cell cycle progression and DNA repair through a new signalling pathway that involves the regulation of Ku86 level and modulates the Ku70/86 activity in the nucleus

    A data-driven energy platform: from energy performance certificates to human-readable knowledge through dynamic high-resolution geospatial maps

    Get PDF
    The energy performance certificate (EPC) is a document that certifies the average annual energy consumption of a building in standard conditions and allows it to be classified within a so-called energy class. In a period such as this, when greenhouse gas emissions are of considerable importance and where the objective is to improve energy security and reduce energy costs in our cities, energy certification has a key role to play. The proposed work aims to model and characterize residential buildings’ energy efficiency by exploring heterogeneous, geo-referenced data with different spatial and temporal granularity. The paper presents TUCANA (TUrin Certificates ANAlysis), an innovative data mining engine able to cover the whole analytics workflow for the analysis of the energy performance certificates, including cluster analysis and a model generalization step based on a novel spatial constrained K-NN, able to automatically characterize a broad set of buildings distributed across a major city and predict different energy-related features for new unseen buildings. The energy certificates analyzed in this work have been issued by the Piedmont Region (a northwest region of Italy) through open data. The results obtained on a large dataset are displayed in novel, dynamic, and interactive geospatial maps that can be consulted on a web application integrated into the system. The visualization tool provides transparent and human-readable knowledge to various stakeholders, thus supporting the decision-making process

    Investigating the Origin of Mycobacterium chimaera Contamination in Heater-Cooler Units: Integrated Analysis with Fourier Transform Infrared Spectroscopy and Whole-Genome Sequencing

    Get PDF
    Mycobacterium chimaera is ubiquitously spread in the environment, including factory and hospital water systems. Invasive cases of M. chimaera infection have been associated with aerosols produced by the use of heater-cooler units (HCU) during cardiac surgery. The aim of this study was to evaluate for the first time the performance of IR-Biotyper system on a large number of M. chimaera isolates collected from longitudinal environmental HCUs samples and water sources from hospitals located in three Italian provinces. In addition, IR-Biotyper results were compared with whole-genome sequencing (WGS) analysis, the reference method for molecular epidemiology, to investigate the origin of M. chimaera contamination of HCUs. From November 2018 to May 2021, 417 water samples from 52 HCUs (Stockert 3T, n = 41 and HCU40, n = 11) and 23 hospital taps (used to fill the HCU tanks) were concentrated, decontaminated, and cultured for M. chimaera. Positive cultures (n = 53) were purified by agar plate subcultures and analyzed by IR-Biotyper platform and Ion Torrent sequencing system. IR-Biotyper spectra results were analyzed using a statistical approach of dimensionality reduction by linear discriminant analysis (LDA), generating three separate clusters of M. chimaera, ascribable to each hospital. Furthermore, the only M. chimaera-positive sample from tap water clustered with the isolates from the HCUs of the same hospital, confirming that the plumbing system could represent the source of HCU contamination and, potentially, of patient infection. According to the genome-based phylogenies and following the classification proposed by van Ingen and collaborators in 2017, three distinct M. chimaera groups appear to have contaminated the HCU water systems: subgroups 1.1, 2.1, and branch 2. Most of the strains isolated from HCUs at the same hospital share a highly similar genetic profile. The nonrandom distribution obtained with WGS and IR-Biotyper leads to the hypothesis that M. chimaera subtypes circulating in the local plumbing colonize HCUs through the absolute filter, in addition with the current hypothesis that contamination occurs at the HCU production site. This opens the possibility that other medical equipment, such as endoscope reprocessing device or hemodialysis systems, could be contaminated by M. chimaera. IMPORTANCE Our manuscript focuses on interventions to reduce waterborne disease transmission, improve sanitation, and control infection. Sanitary water can be contaminated by nontuberculous Mycobacteria, including M. chimaera, a causative agent of invasive infections in immunocompromised patients. We found highly similar genetic and phenotypic profiles of M. chimaera isolated from heater-cooler units (HCU) used during surgery to thermo-regulate patients' body temperature, and from the same hospital tap water. These results lead to the hypothesis that M. chimaera subtypes circulating in the local plumbing colonize HCUs through the absolute filter, adding to the current hypothesis that contamination occurs at the HCU production site. In addition, this opens the possibility that other medical equipment using sanitized water, such as endoscope reprocessing devices or hemodialysis systems, could be contaminated by nontuberculous Mycobacteria, suggesting the need for environmental surveillance and associated control measures

    Non-coding RNAs as prognostic biomarkers: A miRNA signature specific for aggressive early-stage lung adenocarcinomas

    Get PDF
    Lung cancer burden can be reduced by adopting primary and secondary prevention strategies such as anti-smoking campaigns and low-dose CT screening for high risk subjects (aged &gt;50 and smokers &gt;30 packs/year). Recent CT screening trials demonstrated a stage-shift towards earlier stage lung cancer and reduction of mortality (~20%). However, a sizable fraction of patients (30–50%) with early stage disease still experience relapse and an adverse prognosis. Thus, the identification of effective prognostic biomarkers in stage I lung cancer is nowadays paramount. Here, we applied a multi-tiered approach relying on coupled RNA-seq and miRNA-seq data analysis of a large cohort of lung cancer patients (TCGA-LUAD, n = 510), which enabled us to identify prognostic miRNA signatures in stage I lung adenocarcinoma. Such signatures showed high accuracy (AUC ranging between 0.79 and 0.85) in scoring aggressive disease. Importantly, using a network-based approach we rewired miRNA-mRNA regulatory networks, identifying a minimal signature of 7 miRNAs, which was validated in a cohort of FFPE lung adenocarcinoma samples (CSS, n = 44) and controls a variety of genes overlapping with cancer relevant pathways. Our results further demonstrate the reliability of miRNA-based biomarkers for lung cancer prognostication and make a step forward to the application of miRNA biomarkers in the clinical routine

    Post-mortem to ante-mortem facial image comparison for deceased migrant identification

    Get PDF
    The identification of deceased migrants is a global challenge that is exacerbated by migration distance, post-mortem conditions, access to ante-mortem data for comparison, inconsistent international procedures and lack of communication between arrival and origin countries. Due to low technology requirements, fast speed analysis and ease of transferring digital data, facial image comparison is particularly beneficial in those contexts, especially in challenging scenarios when this may be the only initial ante-mortem data available to identify the deceased. The Facial Identification Scientific Working Group (FISWG) professional guidelines for facial image comparison were developed for living facial appearance, and, therefore, a tailored protocol for the application of post-mortem to ante-mortem facial image comparison was proposed and evaluated in this research. The protocol was investigated via an inter-observer and an accuracy study, using 29 forensic cases (2001-2020) from the University of Milan, provided by the Laboratory of Forensic Anthropology and Odontology. In order to replicate a migrant identification scenario, each post-mortem subject was compared to all 29 ante-mortem targets (841 comparisons). The protocol guided the practitioner through stages of facial image comparison, from broad (phase 1) to more detailed (phase 3), eventually leading to a decision of 'exclusion' or 'potential match' for each post-mortem to ante-mortem case (phase 4). In phase 4, a support scale was also utilised to indicate the level of confidence in a potential match. Each post-mortem subject could be recorded with multiple potential matches. The protocol proved to be useful guide for facial image comparison, especially for less experienced practitioners and the inter-observer study suggested good reproducibility. The majority (82-96%) of ante-mortem subjects were excluded at the first stage of the protocol, and 71 full post-mortem to ante-mortem facial image comparisons were carried out. On average, two or three potential matches were recorded for each post-mortem subject. The overall accuracy rate was 85%, with the majority (79%) of ante-mortem non-targets correctly excluded from the identification process. An increased number and quality of available ante-mortem images produced more successful matches with higher levels of support. All potential matches involving non-targets received low levels of support, and for 73% of the post-mortem subjects, the ante-mortem target was the only recorded potential match. However, two ante-mortem targets were incorrectly excluded (one at the first stage of the protocol) and therefore changes to the protocol were implemented to mitigate these errors. A full protocol and a practical recording chart for practitioner use is included with this paper

    MicroRNA Dysregulation in Colon Cancer Microenvironment Interactions: The Importance of Small Things in Metastases

    Get PDF
    The influence of the microenvironment through the various steps of cancer progression is signed by different cytokines and growth factors, that could directly affect cell proliferation and survival, either in cancer and stromal cells. In colon cancer progression, the cooperation between hypoxia, IL-6 and VEGF-A165 could regulate the DNA repair capacity of the cell, whose impairment is the first step of colon cancer development. This cooperation redirects the activity of proteins involved in the metabolic shift and cell death, affecting the cell fate. The pathways triggered by micro environmental factors could modulate cancer-related gene transcription, affecting also small non coding mRNA, microRNAs. MicroRNAs have emerged as key post-transcriptional regulators of gene expression, directly involved in human cancers. The present review will focus first on the intertwined connection between cancer microenvironment and aberrant expression of microRNAs which contribute to carcinogenesis. In particular, the epigenetic mechanisms triggered by tissue microenvironment will be discussed, in view of the recent identification of miRNAs able to directly or indirectly modulate the epigenetic machinery (epi-miRNAs) and that are involved in the epithelial to mesenchimal transition and metastases development
    • …
    corecore