4 research outputs found

    Synaptic Inputs to Displaced Intrinsically-Photosensitive Ganglion Cells in Macaque Retina

    Get PDF
    Ganglion cells are the projection neurons of the retina. Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin and also receive input from rods and cones via bipolar cells and amacrine cells. In primates, multiple types of ipRGCs have been identified. The ipRGCs with somas in the ganglion cell layer have been studied extensively, but less is known about those with somas in the inner nuclear layer, the displaced cells. To investigate their synaptic inputs, three sets of horizontal, ultrathin sections through central macaque retina were collected using serial block-face scanning electron microscopy. One displaced ipRGC received nearly all of its excitatory inputs from ON bipolar cells and would therefore be expected to have ON responses to light. In each of the three volumes, there was also at least one cell that had a large soma in the inner nuclear layer, varicose axons and dendrites with a large diameter that formed large, extremely sparse arbor in the outermost stratum of the inner plexiform layer. They were identified as the displaced M1 type of ipRGCs based on this morphology and on the high density of granules in their somas. They received extensive input from amacrine cells, including the dopaminergic type. The vast majority of their excitatory inputs were from OFF bipolar cells, including two subtypes with extensive input from the primary rod pathway. They would be expected to have OFF responses to light stimuli below the threshold for melanopsin or soon after the offset of a light stimulus

    Synaptic Origins of the Complex Receptive Field Structure in Primate Smooth Monostratified Retinal Ganglion Cells

    Get PDF
    Considerable progress has been made in studying the receptive fields of the most common primate retinal ganglion cell (RGC) types, such as parasol RGCs. Much less is known about the rarer primate RGC types and the circuitry that gives rise to noncanonical receptive field structures. The goal of this study was to analyze synaptic inputs to smooth monostratified RGCs to determine the origins of their complex spatial receptive fields, which contain isolated regions of high sensitivity called hotspots. Interestingly, smooth monostratified RGCs co-stratify with the well-studied parasol RGCs and are thus constrained to receiving input from bipolar and amacrine cells with processes sharing the same layer, raising the question of how their functional differences originate. Through 3D reconstructions of circuitry and synapses onto ON smooth monostratified and ON parasol RGCs from central macaque retina, we identified four distinct sampling strategies employed by smooth and parasol RGCs to extract diverse response properties from co-stratifying bipolar and amacrine cells. The two RGC types differed in the proportion of amacrine cell input, relative contributions of co-stratifying bipolar cell types, amount of synaptic input per bipolar cell, and spatial distribution of bipolar cell synapses. Our results indicate that the smooth RGC\u27s complex receptive field structure arises through spatial asymmetries in excitatory bipolar cell input which formed several discrete clusters comparable with physiologically measured hotspots. Taken together, our results demonstrate how the striking differences between ON parasol and ON smooth monostratified RGCs arise from distinct strategies for sampling a common set of synaptic inputs

    Addressing overdiagnosis and overtreatment in cancer: a prescription for change

    No full text
    A vast range of disorders—from indolent to fast-growing lesions—are labelled as cancer. Therefore, we believe that several changes should be made to the approach to cancer screening and care, such as use of new terminology for indolent and precancerous disorders. We propose the term indolent lesion of epithelial origin, or IDLE, for those lesions (currently labelled as cancers) and their precursors that are unlikely to cause harm if they are left untreated. Furthermore, precursors of cancer or high-risk disorders should not have the term cancer in them. The rationale for this change in approach is that indolent lesions with low malignant potential are common, and screening brings indolent lesions and their precursors to clinical attention, which leads to overdiagnosis and, if unrecognised, possible overtreatment. To minimise that potential, new strategies should be adopted to better define and manage IDLEs. Screening guidelines should be revised to lower the chance of detection of minimal-risk IDLEs and inconsequential cancers with the same energy traditionally used to increase the sensitivity of screening tests. Changing the terminology for some of the lesions currently referred to as cancer will allow physicians to shift medicolegal notions and perceived risk to reflect the evolving understanding of biology, be more judicious about when a biopsy should be done, and organise studies and registries that offer observation or less invasive approaches for indolent disease. Emphasis on avoidance of harm while assuring benefit will improve screening and treatment of patients and will be equally effective in the prevention of death from cancer
    corecore