5,755 research outputs found

    Majorana Quasi-Particles Protected by Z2\mathbb{Z}_2 Angular Momentum Conservation

    Get PDF
    We show how angular momentum conservation can stabilise a symmetry-protected quasi-topological phase of matter supporting Majorana quasi-particles as edge modes in one-dimensional cold atom gases. We investigate a number-conserving four-species Hubbard model in the presence of spin-orbit coupling. The latter reduces the global spin symmetry to an angular momentum parity symmetry, which provides an extremely robust protection mechanism that does not rely on any coupling to additional reservoirs. The emergence of Majorana edge modes is elucidated using field theory techniques, and corroborated by density-matrix-renormalization-group simulations. Our results pave the way toward the observation of Majorana edge modes with alkaline-earth-like fermions in optical lattices, where all basic ingredients for our recipe - spin-orbit coupling and strong inter-orbital interactions - have been experimentally realized over the last two years.Comment: 12 pages (6 + 6 supplementary material

    Wilson Fermions and Axion Electrodynamics in Optical Lattices

    Get PDF
    The formulation of massless relativistic fermions in lattice gauge theories is hampered by the fundamental problem of species doubling, namely, the rise of spurious fermions modifying the underlying physics. A suitable tailoring of the fermion masses prevents such abundance of species, and leads to the so-called Wilson fermions. Here we show that ultracold atoms provide us with the first controllable realization of these paradigmatic fermions, thus generating a quantum simulator of fermionic lattice gauge theories. We describe a novel scheme that exploits laser-assisted tunneling in a cubic optical superlattice to design the Wilson fermion masses. The high versatility of this proposal allows us to explore a variety of interesting phases in three-dimensional topological insulators, and to test the remarkable predictions of axion electrodynamics.Comment: RevTex4 file, color figures, slightly longer than the published versio

    Emerging Bosons with Three-Body Interactions from Spin-1 Atoms in Optical Lattices

    Full text link
    We study two many-body systems of bosons interacting via an infinite three-body contact repulsion in a lattice: a pairs quasi-condensate induced by correlated hopping and the discrete version of the Pfaffian wavefunction. We propose to experimentally realise systems characterized by such interaction by means of a proper spin-1 lattice Hamiltonian: spin degrees of freedom are locally mapped into occupation numbers of emerging bosons, in a fashion similar to spin-1/2 and hardcore bosons. Such a system can be realized with ultracold spin-1 atoms in a Mott Insulator with filling-factor one. The high versatility of these setups allows us to engineer spin-hopping operators breaking the SU(2) symmetry, as needed to approximate interesting bosonic Hamiltonians with three-body hardcore constraint. For this purpose we combine bichromatic spin-independent superlattices and Raman transitions to induce a different hopping rate for each spin orientation. Finally, we illustrate how our setup could be used to experimentally realize the first setup, i.e. the transition to a pairs quasi-condensed phase of the emerging bosons. We also report on a route towards the realization of a discrete bosonic Pfaffian wavefunction and list some open problems to reach this goal.Comment: 17 pages, 13 figure

    Entropy-driven enhanced self-diffusion in confined reentrant supernematics

    Full text link
    We present a molecular dynamics study of reentrant nematic phases using the Gay-Berne-Kihara model of a liquid crystal in nanoconfinement. At densities above those characteristic of smectic A phases, reentrant nematic phases form that are characterized by a large value of the nematic order parameter S1S\simeq1. Along the nematic director these "supernematic" phases exhibit a remarkably high self-diffusivity which exceeds that for ordinary, lower-density nematic phases by an order of magnitude. Enhancement of self-diffusivity is attributed to a decrease of rotational configurational entropy in confinement. Recent developments in the pulsed field gradient NMR technique are shown to provide favorable conditions for an experimental confirmation of our simulations.Comment: 10 pages, 5 figure

    Topological Wilson-loop area law manifested using a superposition of loops

    Full text link
    We introduce a new topological effect involving interference of two meson loops, manifesting a path-independent topological area dependence. The effect also draws a connection between quark confinement, Wilson-loops and topological interference effects. Although this is only a gedanken experiment in the context of particle physics, such an experiment may be realized and used as a tool to test confinement effects and phase transitions in quantum simulation of dynamic gauge theories.Comment: Superceding arXiv:1206.2021v1 [quant-ph

    Anthocyanin and aroma profiling of the 'Albarossa' grapevine crossbreed (Vitis vinifera L.) and its parent varieties 'Barbera' and 'Nebbiolo di Dronero'

    Get PDF
    V. vinifera L. 'Barbera', 'Nebbiolo di Dronero' and the crossbreed 'Albarossa', grown in Piedmont region, Italy, were characterized by the analysis of grape anthocyanins, using High Performance Liquid Chromatography (HPLC), and aromatic compounds using Gas Chromatography coupled with Mass Spectrometry (GC-MS). Five monomeric non-acylated anthocyanins, delphinidin-3-monoglucoside, cyanidin-3-monoglucoside, petunidin-3-monoglucoside, peonidin-3-monoglucoside, malvidin-3-monoglucoside, and the pool of acetic acid acylated anthocyanins and coumarate/caffeoate anthocyanins were detected, as well as the concentration of terpenes, norisoprenoids, alcohols and benzene compounds. Ratios between the different anthocyanin forms were used for varietal profiling, as well as ratios and concentrations of single or pooled aromatic compounds. 'Albarossa' had intermediate levels, between 'Barbera' and 'Nebbiolo di Dronero', of certain anthocyanins and aromas, due to the genetic relationships. &nbsp

    Field-Driven Mott Gap Collapse and Resistive Switch in Correlated Insulators

    Get PDF
    Mott insulators are "unsuccessful metals" in which Coulomb repulsion prevents charge conduction despite a metal-like concentration of conduction electrons. The possibility to unlock the frozen carriers with an electric field offers tantalizing prospects of realizing new Mott-based microelectronic devices. Here we unveil how such unlocking happens in a simple model that shows the coexistence of a stable Mott insulator and a metastable metal. Considering a slab subject to a linear potential drop, we find, by means of the dynamical mean-field theory, that the electric breakdown of the Mott insulator occurs via a first-order insulator-to-metal transition characterized by an abrupt gap collapse in sharp contrast to the standard Zener breakdown. The switch on of conduction is due to the field-driven stabilization of the metastable metallic phase. Outside the region of insulator-metal coexistence, the electric breakdown occurs through a more conventional quantum tunneling across the Hubbard bands tilted by the field. Our findings rationalize recent experimental observations and may offer a guideline for future technological research

    Robustness of quantum memories based on Majorana zero modes

    Get PDF
    We analyze the rate at which quantum information encoded in zero-energy Majorana modes is lost in the presence of perturbations. We show that information can survive for times that scale exponentially with the size of the chain both in the presence of quenching and time-dependent quadratic dephasing perturbations, even when the latter have spectral components above the system's energy gap. The origin of the robust storage, namely the fact that a sudden quench affects in the same way both parity sectors of the original spectrum, is discussed, together with the memory performance at finite temperatures and in the presence of particle exchange with a bath.Physic
    corecore