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We analyze the rate at which quantum information encoded in zero-energy Majorana modes is lost in the
presence of perturbations. We show that information can survive for times that scale exponentially with the size
of the chain both in the presence of quenching and time-dependent quadratic dephasing perturbations, even when
the latter have spectral components above the system’s energy gap. The origin of the robust storage, namely
the fact that a sudden quench affects in the same way both parity sectors of the original spectrum, is discussed,
together with the memory performance at finite temperatures and in the presence of particle exchange with a
bath.

DOI: 10.1103/PhysRevB.88.205142 PACS number(s): 03.67.Pp, 03.67.Lx, 73.21.Hb

I. INTRODUCTION

In the presence of noise and perturbations, the information
stored in quantum systems is typically lost. Indeed, orthogonal
states (or their superpositions) may evolve into similar states,
so that even when the perturbation is known it is impossible
to restore the original one.1 However, the rate at which
information corrupts depends on how it is actually encoded,
on the nature of the perturbations, as well as on the properties
of the system. In particular, in the case of a many-body
system, this rate may depend on its size: For the larger Hilbert
space there is “more space” to keep the states distinguishable.
Systems possessing this property for naturally occurring
perturbations may serve as quantum memories,2 which can
reliably store quantum states for long times.

In this article we investigate the capability of a Kitaev chain3

to store quantum states in the presence of noise. We consider
the encoding of a qubit in the zero-energy Majorana modes of a
Kitaev chain described by Hamiltonian Ĥ0 and analyze the loss
of information occurring when the time evolution describing
the storage period is dictated by a different Hamiltonian
Ĥ0 + V̂ (t), where V̂ (t) is an unknown perturbation. We
explicitly focus on time-dependent quadratic perturbations
containing high frequencies and find that the quantum memory
can be robust to a wide range of perturbations. Specifically,
even though perturbations spread the qubit in the whole Hilbert
space and the average over several V̂ (t) is considered, the
orthogonality of any pair of initial states is preserved for very
long times: The rate at which the information is lost decreases
exponentially with the system size.

The potential use as quantum memories of Kitaev chains4–7

and of other topological systems8–16 has been extensively stud-
ied in recent years, following the seminal work by Kitaev.3,8,17

Most of the prior work has focused on analyzing systems
with topological order, whereby the degeneracy of the ground
state subspace is stable under small local perturbations3,17,18

with frequencies well below the characteristic energy gap.
This ensures that all of the ground states of the perturbed
Hamiltonian have a trivial evolution so that, when encoded
in these ground states, the information can survive for long

times. In contrast, here we consider the situation when highly
excited states are created due to sudden quench perturbations
with high-frequency excitations above the gap.7 In such cases,
conventional topological protection is no longer effective.19

Our work is closely connected to the use of topological sys-
tems as error correcting codes in the context of self-protected
quantum memories.1,7–16 However, in contrast to previous
investigations, we do not consider a specific error correction
procedure,20 but rather analyze whether the information is still
present “somewhere” in the Hilbert space. In fact, our analysis
shows that the memory time grows exponentially with the
system size in situations where previous approaches give a
negative result. Besides, our results may bear an interesting
connection to the phenomenon of many-body localization,21,22

whereby different initial states remain distinguishable for
arbitrarily long times under a quench.

In this article we introduce a series of theoretical tools
to analyze the loss of quantum information encoded in
many-body systems and characterize the optimal procedure to
decode it. In a quantum-memory framework, we quantify the
amount of information that may be recovered after the storage
period and evaluate it, as well as its upper and lower bounds,
for different relevant cases. For the problem of interest, our
numerical methods can investigate relatively large systems,
and the appropriate size scalings are derived. We identify the
conditions for a memory time that scales exponentially with
the system size and study how this exponential dependence
is affected by finite temperatures, or by the particle exchange
between the chain and a reservoir.

This article is organized as follows. In Sec. II we review
the theory of a quantum memory based on the Majorana
modes of two Kitaev chains, and set up the notation. In
Sec. III we present the theory of the optimal recoverability
of the information, both for general and for Gaussian recovery
operations. In Sec. IV we present the main result of the article,
namely the fact that a quantum memory based on the Kitaev
chain can withstand a sudden quench perturbation. In Sec. V
we further elaborate on it, and the effect of temperature and
particle losses is considered. Finally, in Sec. VI we present our
conclusions.
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II. SETUP

We consider a Kitaev chain of 2N Majorana (real) modes
{ĉj } with ĉ

†
j = ĉj and {ĉj ,ĉk}+ = 2δj,k . The Hamiltonian is3

Ĥ (μ,�) = iJ

2

N−1∑
j=1

ĉ2j ĉ2j+1 − iμ

2

N∑
j=1

ĉ2j−1ĉ2j

+ i
|�| − J

2

N−1∑
j=1

ĉ2j−1ĉ2j+2. (1)

At zero temperature it has a topological phase for |μ/J | <

2,� �= 0 and the ground state is quasidegenerate due to
the existence of (nearly) zero-energy Majorana modes m̂1,2

localized at the edges. They can be expressed as linear
combinations of the {ĉj }, and can be used to define a
Dirac mode â = 1

2 (m̂1 + im̂2). Due to superselection rules
on the parity of the number of fermions, two such Dirac
modes are necessary in order to define a meaningful qubit.
Thus, we consider a second Kitaev chain, whose zero-energy
Majorana modes are m̂3,4, and which define a Dirac mode
b̂ = 1

2 (m̂3 + im̂4). We define a qubit in the even parity sector
of the model: span{|0〉 = |vac〉,|1〉 = â†b̂†|vac〉} and construct
a set of Pauli operators:

σ̂ ′
x = −(âb̂ + b̂†â†), σ̂ ′

y = i(âb̂ − b̂†â†),
(2)

σ̂ ′
z = 1̂ − â†â − b̂†b̂.

Results would be identical, apart from notation, in the odd
sector: span{|0̃〉 = â†|vac〉,|1̃〉 = b̂†|vac〉}.

When the Hamiltonian is perturbed or there is an interac-
tion with the environment, the chain undergoes a nontrivial
dynamics. Let us denote by Dt the decoherence channel that
describes the encoding of a qubit into the ground state of the
chains and the subsequent time evolution which describes the
storage of the information (see Fig. 1). Note that the latter takes
into account both the Hamiltonian part of the time evolution
and the nonunitary action of perturbations.

The decoherence channel maps the state of the qubit onto
the state of the two chains; therefore, Dt (ρ̂q) = ρ̂(t), where

Encoding
Recovery
operation

Decoherence 
channel

initial time: t = 0 final time: t 

qubit
state

qubit
state

Storage 
period

system of size N
Many−body Many−body

system of size N

Rt(·)

Dt(·)

ρ̂q ρ̂q

ρ̂(0) ρ̂(t)

FIG. 1. A qubit ρ̂q is encoded into a topological system of size
N and stored for a time t . Perturbations act on the system during
the storage and induce a nonunitary time evolution that destroys the
encoded information. We model this process with a decoherence
channel Dt (·). A recovery operation attempts at retrieving the
information and reconstructs a qubit ρ̂ ′

q which should be as similar
as possible to ρ̂q .

ρ̂q is a qubit density operator and ρ̂(t) is the state of the
chains at time t . ρ̂(0) thus represents the many-body state
where the information is encoded and it must always fulfill
〈σ̂α〉ρ̂q

= 〈σ̂ ′
α〉ρ̂(0), where {σ̂α} are the usual Pauli matrices and

the {σ̂ ′
α} are defined in (2). These conditions do not define ρ̂(0)

uniquely; where not explicitly stated, we will consider

ρ̂(0) = 1

N

(
Î +

∑
α

〈σ̂α〉ρ̂q
σ̂ ′

α

)
, (3)

where N is a properly chosen constant.
In order to simplify the discussion, we assume that the

chains are kept far apart, so that they do not interact with each
other or with the same environment. Moreover, throughout
the article we assume that the first Dirac mode â does not
undergo any dynamics, neither Hamiltonian nor dissipative,
as in general only the relative time evolution of the two chains
contributes to the corruption of the information. In this setting
there is no need to keep track of the modes of the first chain
different from â.

III. OPTIMAL RECOVERY OF THE INFORMATION

After the storage time t , the attempt to retrieve the initial
qubit is described by the recovery channel Rt which maps
back the chain and the extra fermionic mode â to a qubit (see
Fig. 1). It has to be chosen such that the composite channel
Tt � Rt ◦ Dt is as close as possible to the identity channel.
This can be quantified with the recovery fidelity:23

F (Rt ) =
∫

dμϕ〈ϕ| Tt (|ϕ〉〈ϕ|)|ϕ〉, (4)

where the integral is over the surface of the Bloch sphere.
In Appendix A 1 we demonstrate that, given a decoherence

channel, the optimal fidelity F
opt
t is given by

F
opt
t = max

Rt

F (Rt ) = 2
3 + 1

6‖ρ̂+(t) − ρ̂−(t)‖tr, (5)

where ρ̂±(t) ≡ ρ̂x,±(t) = Dt (�̂x,±), �̂x,± = (1̂ ± σ̂x)/2 are
the (pure) eigenstates of σ̂x with eigenvalues ±1, and ‖ · ‖tr

denotes the trace norm, i.e., the sum of the singular values
of the operator. Equation (5) shows that F

opt
t depends on

the distance d(ρ̂,ω̂) � ‖ρ̂ − ω̂‖tr/2 between two many-body
states which result from the time evolution of two orthogonal
qubit states. At t = 0, d[ρ̂+(0),ρ̂−(0)] = 1 but it decreases
with time due to noise and perturbations, and no physical
operation can increase it again because of the contractivity of
the trace norm.1

In Appendix A 1 we also characterize the properties of the
optimal recovery operation Ropt

t that saturates the bound F
opt
t

of Eq. (5). This Ropt
t consists of the measurement on ρ̂(t) of

three many-body observables Ĥα that (i) essentially undo the
rotation that the axes of the original qubit ρ̂q have undergone,
and (ii) quantify the distance between pairs of initially
orthogonal states aligned on them. Indeed, they are chosen so
that tr[ĤαDt (σ̂α)] � ‖Dt (σ̂α)‖tr = 2d[ρ̂α,+(t),ρ̂α,−(t)], where
we applied the linearity of Dt on the eigenstates �̂α,± =
(Î ± σ̂α)/2 of σ̂α:

Ropt
t [ρ̂(t)] = 1

2
Î tr[ρ̂(t)] + 1

2

∑
α

σ̂α tr[Ĥαρ̂(t)]. (6)
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Alternatively, the optimal recovery operation can be thought
of as a two-step procedure: The first being a unitary acting
over the global Hilbert space that attempts to align back the
image of the Bloch sphere, and the second a trace on all the
fermionic modes different from â and b̂, where the initial
qubit was defined and the recovered one is recreated. Notice
that the unitary (defined in terms of Ĥα) may involve N -body
terms acting on all the fermionic modes of the chain and the
specific form depends on the singular value decomposition of
ρ̂+(t) − ρ̂−(t).

Because the optimal recovery operation can be difficult to
implement in practice, it is natural to restrict the optimization
of F [Rt (·)] to those physical actions that can be operatively
realized. Those actions depend on the specific experimental
setup and should be independently studied for each physical
implementation. Here we consider as experimentally relevant
recovery operations those which are fermionic Gaussian
channels.24,25 They comprise the addition and discard of aux-
iliary modes, the time evolution under quadratic Hamiltonians
and under master equations with linear jump operators (see
Appendix B for a short introduction). In Appendix A 2 we
show that the best recovery fidelity attainable with a fermionic
Gaussian channel is

F
opt
G,t = max

Rt (·) is Gaussian
F (Rt ) = 2

3 + 1
6‖
+(t) − 
−(t)‖op. (7)

Here 
±,(t) are the covariance matrices (CM) of ρ̂±(t), defined
as [
±(t)]j,k � itr[ρ̂±(t)ĉj ĉk]. The ‖ · ‖op denotes the operator
norm, i.e., the largest singular value of the operator. Similarly
to the previous case, it is possible to characterize the properties
of the optimal Gaussian recovery operation that achieves F

opt
G,t

(see Appendix A 2).

IV. MAIN RESULTS

We employ Eq. (5) to show that the qubit can efficiently
withstand sudden changes of the Hamiltonian during the
storage period. First, we assume the perfect encoding of
the qubit using the two lowest-energy eigenstates of Ĥ0 �
Ĥ (μ0,�0). For the storage, a perturbation V̂ randomly chosen
from a set according to a measure νV̂ is added to Ĥ0: The
global Hamiltonian describes the time evolution. Finally, the
resulting states are incoherently added (h̄ = 1):

Dt (ρ̂q) =
∫

dνV̂ e−i(Ĥ0+V̂ )t ρ̂(0)ei(Ĥ0+V̂ )t . (8)

We choose V̂ quadratic in the Majorana operators, so that each
term of the integral can be efficiently computed. Moreover, we
consider a discrete measure and exploit the fact that Dt (ρ̂q)
has support in a relatively small subspace (see Appendix C for
more details on the calculation).

We begin considering a quenching perturbation in the
chemical potential of the system. For times t > 0 we consider
the evolution with Ĥ0 + V̂ � Ĥ (μ �= μ0,�0), representing a
classical uncertainty in the number of particles, or the coupling
to an unshielded field. We take Nd values for μ uniformly
distributed in [μ−,μ+]. Figures 2(a) and 2(b) show F

opt
t as a

function of t for different system sizes. μ± is chosen so that
the perturbed Hamiltonians lie inside (a) and outside (b) the
topological phase, respectively. In the former case the decay

0 150 300 450 600
0.9

0.92

0.94

0.96

0.98

1

1.02

time (J−1)

|| 
ρ +

(t
) 

−
 ρ

−
(t

) 
|| tr

 / 
2

0 50 100 150 200

0.2

0.4

0.6

0.8

1

time (J−1)

16 24 32 40 48
25

50

100

200

400

N

t 0 (
J−

1 )

N = 8

N = 48
N = 48

N = 8

(a) (b)

(c)

FIG. 2. (Color online) Robustness of the quantum memory
against Hamiltonian perturbations: μ0 = 0, �0 = J and (a) and (c)
μ− = J , μ+ = 1.5J ; (b) μ− = 2.5J , μ+ = 3J . Upper panels (a) and
(b): Fidelity as a function of time for different chain lengths N = 8,
16, 24, 32, 40, and 48. Lower panel (c): Memory time t0 as function
of N for different values of the fidelity threshold F0: F0 = 0.9995
blue line (x marker), F0 = 0.999 green line (+ marker), F0 = 0.9985
red line (triangular marker). We considered Nd = 101 realizations
uniformly distributed in the range [μ−,μ+]. Data show convergence
behavior for Nd → ∞ (see Appendix C) and can therefore be
considered as an approximation of the continuum situation.

time of F
opt
t strongly depends on the size N , whereas in the

latter case the size dependence is weaker, especially at short
times. Figure 2(c) displays the memory time7 t0(N ), the time
at which a prescribed fidelity threshold F0 is crossed, versus
N for the data in Fig. 2(a). t0(N ) is computed intercepting F0

with a polynomial interpolation of F
opt
t in order to ignore the

effect of fast unessential oscillations. Results are compatible
with an exponential growth of the memory time with N .

Time-independent perturbations have been recently con-
sidered also in Ref. 7, where it is shown that the memory
time does not grow exponentially with the system size. The
discrepancy with our results originates from the choice of
the syndrome based recovery operation,20 which, according
to our analysis, is not the optimal one. Nevertheless, when a
random site-dependent chemical potential is added, excitations
are localized and the memory time increases (see also
Refs. 26 and 27). Our analysis shows that, even if the standard
techniques to correct errors fail, the qubit is still intact and can
be recovered with the optimal recovery operation.

The stability of the memory can be traced back to the fact
that for any pair of Hamiltonians Ĥa,b � Ĥ0 + V̂a,b it holds
that

〈0|eiĤa t e−iĤbt |0〉 ≈ 〈1|eiĤa t e−iĤbt |1〉, (9)

where |0〉 and |1〉 are the two ground states for the original
Hamiltonian H0, and ≈ denotes equality apart for a term
decaying exponentially with N . Indeed, in Appendix C we
define the Nd × Nd matrices G0 and G1:

[Gτ ]j,k = 〈τ |eiĤj t e−iĤk t |τ 〉, τ ∈ {0,1},
(10)

Ĥj � Ĥ0 + V̂j

205142-3
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and show that
1
2‖ρ̂+(t) − ρ̂−(t)‖tr = 〈√G0/Nd,

√
G1/Nd〉, (11)

where 〈·,·〉 is the Hilbert-Schmidt inner product for matri-
ces 〈A,B〉 = tr[B†A]. It follows that perfect recoverability,
namely ‖ρ̂x,+(t) − ρ̂x,−(t)‖tr = 2, is equivalent to G0 = G1.
This means that the excitations generated by any pair of ran-
dom perturbations have almost the same overlap (in modulus
and phase) independent of whether they originated from the |0〉
or |1〉 states. The relation between Eq. (9) and the topological
nature of the states |0〉 and |1〉 and of the perturbed Hamilto-
nians is to be further investigated, as well as its extrapolation
to other scenarios. For a further discussion see Appendix C.

We next show that these results extend to the case in which
V̂ (t) is time dependent and spatially inhomogeneous. Figure 3
shows F

opt
t as a function of time when the parameters of

V̂ (t) oscillate according to a square wave: sgn[sin(2πωt)] and
ω = 2J . In Fig. 3(a) a homogeneous (global) perturbation of
the chemical potential is considered and the memory time
appears to increase with the system size. In order to show
that this behavior is not resulting from a fine-tuned choice
of the parameters, in Fig. 3(b) we include both global and
site-dependent perturbations in the chemical potential and
the pairing term, as well as we consider a different initial
state (μ0 = 0, �0 = 2J ). Figure 3(c) shows that these results
are compatible with an exponential growth of the memory time
with N , whose time scale depends on the specific situation con-
sidered. Notice that we have chosen an oscillation frequency
well above the Hamiltonian gap of Ĥ0, of the order of J . Thus

0 50 100 150 200
time (J−1)

 

 

N = 8
N = 12
N = 16
N = 20
N = 24

8 12 16 20 24
25
50

100
200

N

t 0 (
J−

1 )
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0.9

0.92

0.94

0.96

0.98

1

time (J−1)

|| 
ρ +

(t
) 

−
 ρ

−
(t

) 
|| tr

 / 
2

(a) (b)

(c)

FIG. 3. (Color online) Robustness of the quantum memory
against time-dependent Hamiltonian perturbations. (a) μ0 = 0, �0 =
J and μ− = J , μ+ = 1.5J . The Hamiltonian time evolution is
swapped between Ĥ (μ−) and Ĥ (μ+) every δt = J −1/4. Nd =
101. (b) μ0 = 0, �0 = 2J . The parameters of Ĥ0 + V̂ oscillate
as μ = μ̄ + δμ · sgn[sin(2πωt)] and � = �̄ + δ� · sgn[sin(2πωt)],
ω = 2J , μ̄ = 1.1J , �̄ = 1.9J . We consider Nd = 144 realizations,
with δμ and δ� uniformly distributed in the “square” regions δμ ∈
[−0.1J,0.1J ] and δ� ∈ [−0.1J,0.1J ]. For every realization we
add a (different) site-dependent and time-dependent randomness in
the chemical potential μi(t) = μ′

i{ 1
2 + 1

2 sgn[sin(2πωt)]} + μ′′
i { 1

2 +
1
2 sgn[− sin(2πωt)]}. μ′

i and μ′′
i are taken randomly with a flat

distribution in [−0.1J,0.1J ]. Panels show the optimal fidelity as
a function of time for different sizes of the chain N . (c) Memory time
t0 as function of N for different values of the fidelity threshold F0 for
the case of (b): F0 = 0.97 blue line (x marker), F0 = 0.98 green line
(+ marker), F0 = 0.99 red line (triangular marker).

we conclude that the observed behavior is not directly related
to the ground state properties of Hamiltonian Ĥ0.

V. DISCUSSION

A. Prior knowledge of the recovery operation

From the previous discussion, it may appear that the exact
distribution of the parameters corresponding to the possible
perturbations is necessary in order to implement the “correct”
best recovery operation, as formulated in Eq. (6). Interestingly,
instead, we can show that only a coarse knowledge of the
interval I1 of possible values is sufficient, as long as it includes
the real one I2 ⊂ I1, to obtain a recovery whose quality (in
terms of fidelity or storage time) increments exponentially
with the size N of the physical system.

For the sake of simplicity, we consider the case where
only one parameter (e.g., the chemical potential μ) varies
according to box distributions in I1 and I2, but generalizations
on both hypothesis would be straightforward. Let us call
D(1)

t and D(1)
t the decoherence channels associated with the

noise model as in Eq. (8). ρ̂1 � D(1)
t (ρ̂q) and ρ̂2 � D(2)

t (ρ̂q)
are their outcomes descending from the pure state input ρ̂q ,
whereas Ropt(1)

t is the absolute best recovery operation for D(1)
t

computed by making use of Eq. (6). By definition, we know
that ‖Ropt,(1)

t (ρ̂1) − ρ̂q‖ < ε, with ε scaling exponentially with
the size N . In Appendix D we show that ‖Ropt,(1)

t (ρ̂2) −
ρ̂q‖ � 2

√
ε/p, where p = |I2|/|I1|, a bound that also scales

exponentially with the size N . Thus, the application of Ropt,(1)
t

after the action of D(2) defines a memory time that, though
not absolute best, still increases exponentially with the size
of the system. It is therefore demonstrated that one does not
need a fine-tuned knowledge of the perturbation (and therefore
of the absolute optimal Ropt,(2)

t ) in order to gain exponential
protection of the qubit storage.

B. Interactions

So far we considered only perturbations preserving the
quadratic character of the Hamiltonian. It would be interesting
to analyze whether the exponential scaling persists even in
the presence of more general perturbations, and in particular
of interactions. Although such a study is outside the scope
of the present work because it requires the use of different
numerical techniques, we believe that interactions may not lead
to a dramatic change of the picture arising from the previous
discussion. Indeed, time evolution in presence of interactions
can be considered within the generalized Bogoliubov theory.28

The result is a nonlinear problem that can be mapped onto
a quadratic time-dependent Hamiltonian whose coefficients
depend on the state which is evolved in time. Remarkably, such
time-dependent Hamiltonian has the form of those investigated
above, so that we still expect the memory time to increase with
the system size.

C. Gaussian recovery operations and temperature

We next examine memory performance for the restricted set
of Gaussian recovery operations. Figure 4 displays the optimal
Gaussian fidelity in the presence of the same perturbations as in
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FIG. 4. (Color online) Optimal Gaussian fidelity as a function of
time for different system sizes N : μ0 = 0 and μ− = J , μ+ = 1.5J .
We considered at most Nd = 101 realizations uniformly distributed
in the range [μ−,μ+]; plotted values for Nd → ∞ are obtained via
scaling as 1/Nd (see Appendix C).

Fig. 2(a): The fidelity improves with the size of the system but
saturates for sufficiently large N . Remarkably, similar results
are obtained when the encoding is performed in the state of
the second chain where all of the nonzero modes are initially
in thermal equilibrium at a temperature β−1:

ρ̂β(0) = 1

N

(
Î +

∑
α

〈σ̂α〉ρ̂q
σ̂ ′

α

)
e−β

∑
α>0 εαf̂

†
α f̂α

tr[e−β
∑

α>0 εαf̂
†
α f̂α ]

. (12)

Operators f̂α diagonalize Ĥ0 and εα is the corresponding
energy; ε0 ∼ e−N and f̂0 ≡ b̂.

Because we deal with convex combinations of mixed states,
we can only plot an upper bound F

up
t to the optimal fidelity

(see Appendix C), which we observed to be very close to the
exact value in cases in which the latter was computable (not
shown). For temperatures above the gap, Fig. 5 (left) displays
a clear saturation behavior. For temperatures below the gap,
our results are not conclusive (not shown), even if lowering the
temperature keeping a fixed value of N clearly increases the
saturation bound, as shown in Fig. 5 (right). Thus, it appears
that the temperature defines an effective system size up to
which topological protection can occur. These results can be
understood as follows: (i) although each term in the integral
(8) is Gaussian, its sum (convex combination) is not, and thus
the density operator is not Gaussian either; and (ii) a Gaussian
recovery operation can only depend on the CM of the states
Dt (ρ̂q), which for (pure) non-Gaussian states coincides with
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FIG. 5. (Color online) Upper bound to the optimal fidelity in
presence of thermal modes. (Left) Temperature is fixed: β−1 = 2.5J

and the figure shows the upper bound as a function of time for different
lengths of the chain N = 8, 16, 24, 32, 40, and 48. (Right) Size is
fixed: N = 32 and the figure shows the upper bound as a function
of time for different temperatures β−1 = 0.5J , 1.0J , 2.5J , 5J , and
10J . We take Nd = 101 realizations.
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FIG. 6. (Color online) Effects of particle losses according to
Eq. (13); μ0 = 0 and 
 = J . (Left) Upper and lower bound to the
optimal fidelity as a function of time, showing a clear exponential
scaling. (Right) Upper bound to the optimal fidelity as a function
of time for different system sizes: N = 8, 16, 24, and 32. Results
coincide exactly and are indistinguishable.

that of a mixed Gaussian state.29 Thus, restricting to Gaussian
recoveries has the same effect as considering mixed states, and
this explains the similarity between this case and that of finite
temperature.

D. Markovian interaction with a bath

Finally, we consider the effect of particle interchange
with the environment. Previous works already indicate that
a quantum memory may be extremely sensitive to any such
perturbation.5 We find that this remains the case even when
the optimal recovery is used. To show this, we describe
the interaction of the system with a bath with which it can
interchange particles via a Lindblad master equation:

∂t ρ̂ = −i[Ĥ0,ρ̂] + 


N∑
n=1

(
d̂n ρ̂ d̂†

n − 1

2
{d̂†

nd̂n,ρ̂}+
)

. (13)

Here d̂n = 1
2 (ĉ2n−1 + iĉ2n) annihilates one fermion in the nth

physical site, and Ĥ0 is the protecting Hamiltonian. This
equation transforms Gaussian states into Gaussian states, and
thus can be rewritten in terms of the CM.24,25 The optimal
fidelity (5) cannot be directly computed in terms of the CM.
In order to circumvent this problem, we bound F

opt
t with

1
2‖ρ̂x,+(t) − ρ̂x,−(t)‖tr � [1 − FU (ρ̂x,+,ρ̂x,−)2]1/2, where FU

is the Uhlmann fidelity,1 which for Gaussian states is a function
of their CM (see Appendix B). Results in Fig. 6 demonstrate
that the information is corrupted at a rate which does not de-
pend on the system size, the reason being the uniqueness of the
fixed point of (13), reached in a time independent of the size.

VI. CONCLUSIONS

Our work demonstrates that quantum information stored in
Kitaev’s chain can be robust to perturbations if the optimal
recovery of information is used. We show that for a broad
range of both quenching and time-dependent perturbations the
memory time scales exponentially with the system size, and we
have identified the condition (9) which is responsible for this
result. This effect disappears at sufficiently large temperatures,
as well as when the system interchanges particles with a bath.

Our results open a number of interesting research directions.
First, it would be interesting to explore in detail the stability
of the memory when interactions are included. This question
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could be answered for relatively small chains with exact
numerical calculations. Because the study of large systems and
long times may be beyond current numerical possibilities, an
experimental quantum simulation might be required. Second,
the relation of the present observations to the topological
properties of the Kitaev chain has to be explored. Moreover,
similar effects may be investigated in other topological models,
as for example the px + ipy model,30,31 where the methods
developed here can be directly applied. Third, the implementa-
tion of the optimal recovery operation should be also analyzed,
because the required recovery time required may need to grow
exponentially with the system size. Finally, similar effects
can be explored in other systems where the localization of
information in Hilbert space is resilient to temperature and
general interactions with the environment. Specifically, it is
intriguing to investigate the connection between our results and
many-body localization phenomena.21,22 Some of the concepts
and tools developed in the present work can be used to explore
the utility of such systems for storage and manipulation of
quantum information.32

ACKNOWLEDGMENTS

We gratefully acknowledge fruitful discussions with
G. Giedke, V. Giovannetti, B. Horstmann, R. Huse, C. Kraus,
and F. Pastawski. Special thanks for invaluable support
to H.-H. Tu. Part of this work has been supported by
the European Community’s Seventh Framework Programme
(FP7/2007-2013) under Grant No. 247687 (IP-AQUTE). L.M.
is supported by Regione Toscana POR FSE 2007-2013.

APPENDIX A: OPTIMAL RECOVERY OPERATIONS

1. General recovery operation

We present the derivation of Eq. (5). We first show that the
fidelity of any recovery operation is upper bounded by (5),
F (Rt ) � F

opt
t ∀Rt , and then construct an explicit recovery

operation Ropt
t , which achieves the upper bound.

We recall that for any bounded Hermitian operator X̂ the
trace norm is ‖X̂‖tr = maxĤ tr(Ĥ X̂), and the maximization is
restricted to Hermitian operators fulfilling ‖Ĥ‖op � 1, where
‖X̂‖op denotes the maximum singular value of X̂. Moreover,
according to (4), F (Rt ) is an average over the Bloch surface,
which is best expressed as23

F (Rt ) = 1

2
+ 1

12

∑
α=x,y,z

tr[σ̂αTt (σ̂α)]. (A1)

We derive the upper bound. Because of the contractivity of
the trace distance1 under Rt , the inequality

tr[σ̂α Tt (σ̂α)] � ‖σ̂α‖op‖Tt (σ̂α)‖tr � 1 · ‖Dt (σ̂α)‖tr

holds, from which we obtain

F (Rt ) � 1

2
+ 1

12

∑
α=x,y,z

‖ρ̂α,+(t) − ρ̂α,−(t)‖tr, (A2)

where ρ̂α,±(t) � Dt (�̂α,±), with �̂α,± � (Î ± σ̂α)/2, α =
x,y,z. Notice that the states ρ̂±(t) defined in Sec. III equal
the ρ̂x,±(t) which have just been defined.

Let us now specify (A2) to the case of Dt not acting on the
fermionic mode â (see Sec. II). The operator Ĥz � ââ† − â†â
is Hermitian and ‖Ĥz‖op � 1; moreover tr[Ĥz ρ̂z,±(t)] = ±1.
Thus we have

2 = tr{Ĥz[ρ̂z,+(t) − ρ̂z,−(t)]}
� ‖ρ̂z,+(t) − ρ̂z,−(t)‖tr � ||�̂z,+ − �̂z,−||tr = 2.

Thus ‖ρ̂z,+(t) − ρ̂z,−(t)‖tr = 2. Furthermore, since Dt does
not act on â, we can write ρ̂y,±(t) = V̂xy ρ̂x,±(t)V̂ †

xy , where
V̂xy � e−iπâ†â/2. Therefore

‖ρ̂x,+(t) − ρ̂x,−(t)‖tr = ‖ρ̂y,+(t) − ρ̂y,−(t)‖tr. (A3)

The bound F (Rt ) � F
opt
t ∀Rt follows from the combination

of (A2) with these considerations.
The recovery map Ropt

t which achieves F (Ropt
t ) = F

opt
t is

in the form

Ropt
t [ρ̂(t)] = 1

2
Î tr[ρ̂(t)] + 1

2

∑
α

σ̂α tr[Ĥαρ̂(t)] (A4)

and the operators Ĥα are such that tr[ĤαDt (σ̂ ′
α)] = ‖Dt (σ̂ ′

α)‖tr.
Ĥz has already been defined. The Ĥα can be interpreted as the
observables to be measured in ρ̂(t) in order to reconstruct ρ̂q .

Let us rewrite

ρ̂x,+(t) − ρ̂x,−(t) = âR̂ + R̂†â†, R̂ = Dt (−b̂).

We write the most general Hermitian operator:

Ĥx = âŜ1 + Ŝ
†
1â

† + â†âŜ2 + ââ†Ŝ3,

which must satisfy Ĥ
†
x Ĥx � Î. We get

tr[Ĥx(âR̂ + R̂†â†)] = tr[(Ŝ1R̂
† + R̂Ŝ

†
1)â†â].

Using the left polar decomposition R̂ = P̂ Û , where P̂ =√
R̂R̂† is positive semidefinite and Û is unitary, we have

that the maximum is attained when Ŝ1 = Û , and Ŝ2 = Ŝ3 = 0.
Therefore, the maximum is achieved by

Ĥx = âÛ + Û †â†, Ĥy = −iâÛ + iÛ †â†.

Furthermore, since both â and R̂ change the fermionic parity,
Ĥx,y do not. They also fulfill

tr[Ĥαρ̂α,±(t)] = ± 1
2‖ρ̂x,+(t) − ρ̂x,−(t)‖tr, α = x,y

from which tr[ĤαDt (σ̂α)] = ‖Dt (σ̂α)‖tr follows.
The optimal recovery map (A4) is linear, trace preserving,

and it also preserves the fermionic parity, since Ĥα do. For it
to be a valid quantum channel we have only to show that it
is completely positive. We construct a unitary operator acting
on all the fermionic modes Ŵ such that Ropt

t (ρ̂) = tr[Ŵ ρ̂Ŵ †],
where the trace is taken over the fermionic degrees of freedom
which are different from â and b̂ and the qubit is recovered in
the even parity sector of their Hilbert space. The operator is

Ŵ = 1

8

[
1̂ +

∑
α=x,y,z

σ̂ ′
αĤα

]
. (A5)

Using that Ĥ 2
α = 1̂ and ĤαĤβ = iεα,β,γ Ĥγ , where εα,β,γ is the

Levi-Civita symbol, one can show that Ŵ is unitary and that it
correctly defines Ropt

t (ρ̂). Furthermore, F (Ropt
t ) saturates the

bound in (5).
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2. Gaussian recovery operation

We present the derivation of Eq. (7); the proof is similar to
that in Appendix A 1. Because Gaussian fermionic channels
map fermions to fermions, we need to explicitly consider
the fact that the recovered qubit is composed of fermions.
In particular, we have to consider what happens when the
decoherence channel changes the parity of the state but still
preserves the orthogonality of the initial qubit states. This
may occur, for instance, when decoherence is caused by the
coherent interchange of particles with a reservoir. Imagine
the initial qubit state |�〉 = γ |0〉 + δ|1〉, |γ |2 + |δ|2 = 1 is
mapped to (see definitions in Sec. II)

|�(t)〉 = α(γ |0〉 + δ|1〉) + β(γ |0̃〉 + δ|1̃〉),
|α|2 + |β|2 = 1.

The state is non-Gaussian (it is pure but with no defined parity)
and clearly contains all the information about the initial state.
However, no Gaussian recovery operation can bring it back to
|�〉, which is a Gaussian state. The problem can be bypassed
defining the recovered (fermionic) qubit in both parity sectors.

Recalling that m̂1, m̂2 are the decoherence-free modes
which constitute â and that the zero-energy modes of the
second Kitaev chain are m̂3 and m̂4 (see Sec. II), we express
the Pauli operators of the qubit as

σ̂ ′′
x = (â† − â)(b̂† + b̂) = im̂3m̂2, (A6)

σ̂ ′′
y = −i(â† + â)(b̂† + b̂) = im̂3m̂1, (A7)

σ̂ ′′
z = â†â − ââ† = im̂1m̂2, (A8)

where the modes â(†) and b̂(†) have been defined in Sec. II.
Notice the difference with the σ̂ ′

α in Eq. (2): the σ̂ ′′
α act on both

the parity sectors of the qubit.
We recall that the action of a general Gaussian channel

transforms a Gaussian M-modes state with CM: 
 into a N -
modes state with CM: 
′ = B
BT + A (see Appendix B and
Ref. 24). B and A are 2N × 2M and 2N × 2N matrices chosen
such that Q, defined as

Q =
(

A B

−BT 0

)
(A9)

satisfies QT Q � I; A must be skew symmetric.
We denote RG,t as the Gaussian recovery operation, and

TG,t = RG,t ◦ Dt . Moreover, we define

�α = 
Dt (�̂α,+) − 
Dt (�̂α,−), (A10)

�out
α = 
TG,t (�̂α,+) − 
TG,t (�̂α,−) = BR�αBT

R, (A11)

the difference of covariance matrices corresponding to the
states after the decoherence channel and after the recovery
operation, respectively. Notice that the matrices �α are 2N ×
2N matrices, whereas the matrices �out

α are 4 × 4 matrices.
The assumption that the decoherence channel does not act
on the first two Majorana modes m̂1,2 is reflected by some
properties of �α which are best expressed considering the
block structure:

�α =
(

K ′
α −LT

α

Lα K ′′
α

)
, (A12)

where K ′, L, and K ′′ are 2 × 2, 2(N − 1) × 2, and 2(N −
1) × 2(N − 1) matrices, respectively. We obtain

K ′
z = −2J, Lx = ( �l1, �l2 ),

(A13)

Ly = LxJ, J =
(

0 −1

1 0

)
,

where �l1,2 are column vectors. Additionally, Lz, K ′
x,y , and K ′′

x,y

are zero matrices. Thus

‖�x‖op = ‖�y‖op = ‖Lx‖op � 2. (A14)

We can now show that F (RG,t ) � F
opt
G,t ∀RG,t . The starting

point is Eq. (A1), modified as follows:

FG,t = 1

2
+ 1

12

∑
α=x,y,z

tr[σ̂ ′′
αTG,t (σ̂α)]. (A15)

Noting that the σ̂ ′′
α are quadratic in the Majorana operators and

recalling the definition of CM, we obtain

tr
[
σ̂ ′′

αTG,t (σ̂α)
] = (

�out
α

)
β1,β2

�
∥∥�out

α

∥∥
op, (A16)

where (β1,β2) = (3,2), (3,1), and (1,2) for α = x,y,z, re-
spectively. The most general Gaussian recovery operator RG,t

yields ∥∥�out
α

∥∥
op = ∥∥BR �α BT

R
∥∥

op � ‖�α‖op (A17)

given that QT Q � I. Since 2 � ‖�z‖op � (�z)1,2 =
(Kz)1,2 = 2, we get that ‖�z‖op = 2. Using (A14) we obtain
the desired bound.

We now provide an explicit Gaussian recovery operation
which attains the bound. The recovery operation consists of
the application of a Gaussian unitary operation ŴG to the
the system and in subsequently tracing out N − 2 modes
of the system. To define ŴG, consider the singular value
decomposition of Lx = U�V T , where U (V ) is a unitary
2(N − 1) × 2(N − 1) (2 × 2) matrix and � is a 2(N − 1) × 2
matrix. Clearly, it is also possible to construct U ′ and V ′ such
that Lx = U ′�′V ′ and �′ has at most two elements different
from zero, �1,2 � �2,1 � 0, named the singular values of
Lx . We define ŴG to be the unitary transformation which
is represented by an orthogonal transformation V ′ ⊕ U ′:

ŴG �̂c Ŵ
†
G = (V ′ ⊕ U ′) �̂c. (A18)

Physically, ŴG rotates all the information between ancilla and
system into the first two modes of the system. The other modes
can be now traced out. Summarizing,

Ropt
G,t (ρ̂) = tr[ŴG ρ̂ Ŵ

†
G]. (A19)

The CM of Ropt
G,t (ρ̂) is a function of 
, the CM of ρ̂:


Ropt
G,t (ρ̂) = [(V ′ ⊕ U ′) 
 (V ′T ⊕ U ′T )]|(1−4),(1−4). (A20)

Finally, let us prove that F (Ropt
G,t ) saturates the bound.

Denote T opt
G,t = Ropt

G,t ◦ Dt . Clearly∑
α=x,y,z

tr
[
σ̂ ′′

αT
opt

G,t (σ̂α)
] = (

�out
x

)
3,2 + (

�out
y

)
3,1 + (

�out
z

)
1,2.

By construction of ŴG, (�out
x )3,2 = ‖�x‖op. Since J com-

mutes with every 2 × 2 orthogonal matrix, (�out
y )3,1 =
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‖�y‖op = ‖�x‖op. Finally, (�out
z )1,2 = (�z)1,2 = 2 because

the orthogonal transformation V ′ leaves the covariance matrix
of the fermionic mode â unchanged. Together with Eq. (A15),
this shows that the recovery operationRopt

G,t saturates the bound
in (7).

APPENDIX B: FERMIONIC GAUSSIAN STATES

The formalism of fermionic Gaussian states (FGS)24 is
particularly useful in the treatment of quadratic fermionic
theories, which include a wide class of topological materials.30

Not only FGS comprise the ground states and thermal
states of such Hamiltonians (via Bogoliubov transform) but
also they describe dynamical evolution under some master
equations (exactly)25 or in presence of moderate interactions
(approximately).28 For a N modes system, calculations are
restricted on a space scaling only as N rather than ex-
ponentially. Indeed, these states are fully characterized by
the sole (antisymmetric and real valued) covariance matrix
(CM), i.e., the expectation values of quadratic combinations
of fields, whereas all higher moments can be deduced via Wick
theorem.33

Given N fermionic modes, we can conveniently rewrite
the 2N canonical Dirac fermionic operators {d̂ (†)

i }i=1...N (with
{d̂i ,d̂j } = 0; {d̂i ,d̂

†
j } = δi,j ) in terms of Majorana operators,

i.e., fermionic operators which are real, Hermitian, and unitary:

ĉ2j−1 = d̂j + d̂
†
j , ĉ2j = −i(d̂j − d̂

†
j ),

(B1)
{ĉm,ĉn} = 2δm,n,

where m ∈ {(1,1), . . . ,(N,2)} glues two subindices together
for brevity. Some simple algebra shows that Eq. (1) is a
rewriting of

Ĥ (μ) =
N−1∑
j=1

(−J d̂
†
j d̂j+1 + �d̂

†
j d̂

†
j+1 + H.c.) − μ

N∑
j=1

d̂
†
j d̂j .

Canonical transformations can be represented by orthogonal
real matrices ĉk → ĉ′

k = ∑
l Ok,l ĉl , as well as by a unitary

rotation ĉ′
k = Û ĉkÛ

† in Fock space:24 In the case of O ∈
O(2m), i.e., det O = 1, the relation reads O = exp(A) ⇔
Û = exp (−Aα,β ĉαĉβ/4) apart from an arbitrary phase. The

number parity operator reads P̂ = (−1)
∑

j d̂
†
j d̂j = iN

∏
k ĉk and

is almost invariant under canonical transformations: P̂ ′ =
det O · P̂ .

A N -modes FGS is a N -fermions state which has a density
operator of the form ρ̂ = ∏N

α=1 ρ̂α , with

ρ̂α = e−βαd̂
†
α d̂α

1 + e−βα

= e− i
4 βα (ĉα,1 ĉα,2−ĉα,2 ĉα,1)

2 cosh(βα/2)
= 1̂ − iλαĉα,1ĉα,2

2
, (B2)

where λα = tanh(βα/2), and the â(†)
α (ĉα,σ ) are the eigenmodes

of the density operator. One can easily verify that Trρ̂ = 1,
whereas Trρ̂2 = ∏

α(1 + λ2
α)/2, i.e., the state is pure if and

only if λα = ±1; moreover, ρ̂ is positive—and thus a well-
defined density operator—if and only if λα ∈ [−1,1]. FGS
automatically satisfy the superselection rule of the fermionic

parity P̂ , and therefore their density matrices can be expressed
as a direct sum ρ̂ = ρ̂even ⊕ ρ̂odd.

The skew-symmetric CM of a FGS ρ̂ is defined as the table
of quadratic expectation values:


m,n = i

2
Tr[ρ̂ (ĉmĉn − ĉnĉm)],

(B3)


 =
⊕

α

(
0 −λα

λα 0

)
,

where the second expression is given in the eigenbasis of
Eq. (B2). Under a canonical transformation O, the CM
transforms as 
′ = O
OT . The CM completely characterizes
the properties of a FGS, as elegantly stated by the following
reformulation of the Wick’s theorem:33

ip Tr
[
ρ̂ ĉα1 · · · ĉα2p

] = Pf
[

|α1 ··· α2p

]
, (B4)

where 
|α1···α2p
is the restriction of 
 to the modes {α1 · · · α2p},

and Pf denotes its Pfaffian. This allows us to simulate FGS
efficiently with classical computers.

The squared overlap of two FGS ρ̂ and σ̂ is24

Tr[ρ̂ σ̂ ] = +
√

det

[
1 − 
ρ
σ

2

]
, (B5)

Moreover, generalizations of formula (B5) can be derived for
any two Gaussian operators.24 Because the time-evolution
Û (t) under a quadratic Hamiltonian Ĥ is a Gaussian oper-
ator, such formulas for Tr[ρ̂ Û (t)] and Tr[Û ′(t) Û ′′(t)] have
been widely used in the main text. Moreover, the CM of
Û (t)ρ̂(0)Û (t)† is 
(t) = O(t)
(0)O(t)T , where O(t) = e−T t

and T is the real skew-symmetric matrix such that Ĥ =
i
4

∑
j,k Tj,kĉj ĉk .

Also the Uhlmann fidelity among mixed Gaussian states
FU (ρ̂,σ̂ ) = Tr

√
ρ̂1/2σ̂ ρ̂1/2 can be efficiently computed via

their CMs. By using Eq. (B2) we can define Ĥρ such

that ρ̂1/2 = exp(−Ĥρ)/
√

Tr exp(−2Ĥρ) and the correspond-
ing imaginary-time evolution of the state σ̂ :28

ρ̂1/2 σ̂ ρ̂1/2 = Tr[ρ̂ σ̂ ] · σ̂I (τ = 1),
(B6)

σ̂I (τ ) = e−Ĥρτ σ̂ e−Ĥρτ

Tr[e−2Ĥρτ σ̂ ]
.

Since σ̂I (τ ) is still a Gaussian state, whose CM can be
efficiently computed,28 the trace of its square root in FU can
be calculated by looking again at Eq. (B2) as above.

APPENDIX C: SOME DETAILS
ON HAMILTONIAN PERTURBATIONS

We present a demonstration of Eq. (11). First, a simple in-
spection shows that Gσ = G†

σ , Gσ > 0, and ‖√Gσ/Nd‖HS =
1. Let us consider the states |±〉 = (|0〉 ± |1〉)/√2 and use
them to define the overlap matrix M:

M =
(

M (+,+) M (+,−)

M (−,+) M (−,−)

)

= 1

2

(
G0 + G1 G0 − G1

G0 − G1 G0 + G1

)
, (C1)
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with M
(τ,τ ′)
j,k = 〈τ |eiĤj t e−iĤk t |τ ′〉 (τ,τ ′ = ±). The second

equality follows from the assumption of a decoherence-
free mode. Let us now consider the set of 2Nd states:
C = {e−iĤj t |+〉}Nd

j=1 ∪ {e−iĤj t |−〉}Nd
j=1 and an orthonormal ba-

sis B = {|xj 〉}NB

j=1 such that span B ≡ span C. A matrix Y

representing the basis change e−iĤk t |+〉 = ∑
q Y ∗

k,q |xq〉 and

e−iĤk t |−〉 = ∑
q Y ∗

Nd+k,q |xq〉 is defined by YY † = M and can
be computed via the eigenvalue decomposition of M . Given
V unitary and D diagonal matrix such that M = V DV †, a Y

defined as Y � V
√

D is one such possible basis change. A
simple algebra leads to

1

2
‖ρ̂+(t) − ρ̂−(t)‖tr = 1

2Nd

∥∥∥∥∥Y †

(
I 0

0 −I

)
Y

∥∥∥∥∥
tr

. (C2)

We can obtain a more explicit expression of Y considering
the eigenvalue decomposition of Gσ : Gσ = VσDσV †

σ and
observing that the matrix

V =
(

V0 V1

V0 −V1

)
(C3)

diagonalizes M . Some simple algebra shows that the singular
values of Y †( I 0

0 −I )Y are twofold degenerate and coincide with

the singular values of
√

G0G1. Equation (11) follows from the
positivity of Gσ .

The numerical computation of Gσ is efficient when Ĥj is a
quadratic Hamiltonian so that Ûj,k � eiĤj t e−iĤk t is a Gaussian
operator (ρ̂σ = |gσ 〉〈gσ | is FGS) and thus [Gσ ]j,k is a function
of the CM of ρ̂σ and Ûj,k . We warn the reader interested in
reproducing the data that some care is required in order to
obtain the proper phase.

We checked the possibility of using the data to obtain
information regarding the limit Nd → ∞. In Fig. 7 we show
the dependence of F

opt
t for different values of Nd; data show

a clear convergence behavior, even if the functional form of
such scaling was not found. In Fig. 8 we show the dependence
of F

opt
G,t on Nd; data show a clear Nd scaling, which allowed us

to take the limit Nd → ∞ with a linear fit.
In the main text we provide numerical evidence that the

memory time of the system increases exponentially while
letting the system size N → ∞, which is equivalent to
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FIG. 7. (Color online) Dependence of F ∗
t on Nd. These data refer

to the topological perturbation of Fig. 2: N = 32, μ0 = 0, μ− = J ,
μ+ = 1.5J . The scaling is shown for five times. From up to down:
24J −1, 54J −1, 174J −1, 354J −1, 474J −1. Data show a convergence
behavior for Nd → ∞.
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FIG. 8. (Color online) Dependence of F ∗
Gt on 1/Nd. These data

refer to the topological perturbation of Fig. 2: N = 32, μ0 = 0, μ− =
J , μ+ = 1.5J . The scaling is shown for five times. From up to down:
12J −1, 24J −1, 54J −1, 174J −1, 354J −1, 474J −1. Data show a N−1

d

dependence: the Nd → ∞ value is extrapolated with a linear fit (thin
red lines).

X � G0 − G1
N→∞−−−→ 0. We first observe that

|Xj,k| ∝
∣∣∣∣pf

[

0 + 
1

2
+ ϒ

tr[Ûj,k(t)]

]∣∣∣∣, (C4)

where 
σ is the CM of ρ̂σ and ϒ is the CM of Ûj,k; we
assume tr[Ûj,k(t)] �= 0 in order to avoid lengthy regularized
expressions. The proportionality factor between the left-
hand side and the right-hand side is bounded by 1. Direct

numerical inspection of the matrices shows that Xj,k
N→∞−−−→

e−N because 1
2 (
0 + 
1) + ϒ/tr[Ûj,k(t)] has two singular

values which scale exponentially to zero (see Fig. 9). This
is clear when Ûj,k = I and ϒ = 0 since 
0 + 
1 has two
zero eigenvalues corresponding to the zero-energy modes of
the Hamiltonian H0. When Ûj,k �= I it would be tempting
to interpret ϒ/tr[Ûj,k(t)] as a perturbation and invoke some
topological stability argument; unfortunately ϒ/tr[Ûj,k(t)] is
neither bounded nor it is short range. Moreover, one would
like to have an explanation which distinguishes the situation in
which Ûj,k(t) is the product of two time evolution according to
topological and nontopological Hamiltonians. Intuitively, the
argument must reside on the fact that any topological Hamil-
tonian spreads the localized zero-energy modes exponentially
slower than nontopological Hamiltonians do.

In the main text we present results also for thermal
states. Because in this case the matrix ρ̂±(t) is not a
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FIG. 9. Singular values of the matrix in Eq. (C4). (Left) The
quench Hamiltonians are in the topological phase: μ0 = 0, μj =
J , μk = 1.5J . (Right) The quench Hamiltonians are not in the
topological phase: μ0 = 0, μj = 2.5J , μk = 3.0J .
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convex combination of a limited number of known pure
states, we cannot exactly compute F ∗

t . Using the fact
that ρ̂±(t) = 1

Nd

∑Nd
j=1 e−iĤj t ρ̂±(0)eiĤj t and denoting ρ̂

(j )
± (t) =

e−iĤj t ρ̂±(0)eiĤj t , we compute the following upper bound:

‖ρ̂+ − ρ̂−‖tr � min
π∈SNd

1

Nd

Nd∑
j

‖ρ̂(j )
+ − ρ̂

[π(j )]
− ‖tr

� min
π∈SNd

1

Nd

Nd∑
j

√
1 − FU (ρ̂(j )

+ ,ρ̂
[π(j )]
− )2.

The minimization over the set of permutation of Nd ele-
ments can be done with the so-called “Hungarian algorithm”
or “Kuhn-Munkres algorithm.”34 The computation of the
Uhlmann fidelity FU between two mixed FGS has been
explained in Appendix B.

The fidelity of the optimal Gaussian operation requires
the computation of the CM of ρ̂±(t), which are not FGS.
Because these states are convex combination of known FGS
and because the CM is a linear function of the state, the CM
of ρ̂±(t) is


±(t) = 1

Nd

Nd∑
j=1



(j )
± (t), (C5)

where 

(j )
± (t) is the CM of ρ̂

(j )
± (t).

APPENDIX D: DETAILS ON THE PRIOR KNOWLEDGE
OF THE RECOVERY OPERATION

We complement the discussion of Sec. V A. We recall
the definition of Uhlmann fidelity1 FU (ρ̂,σ̂ ) � tr[

√√
ρ̂σ̂

√
ρ̂],

which in case ρ̂ is a pure state |�ρ̂〉, reduces to FU (ρ̂,σ̂ ) =√〈�ρ̂ |σ̂ |�ρ̂〉. Moreover, the following is true:1

1 − FU (ρ̂,σ̂ ) � 1
2‖ρ̂ − σ̂‖tr �

√
1 − FU (ρ̂,σ̂ )2. (D1)

By definition ‖Ropt,(1)
t (ρ̂1) − ρ̂q‖op < ε, and ε scales expo-

nentially with the size N and thus 1 � FU (Ropt,(1)
t (ρ̂1),ρ̂q) �

1 − ε/2. Moreover, FU (Ropt,(1)
t (ρ̂1),ρ̂q)2 � 1 − ε + ε2/4 �

1 − ε. Because tr[ρ̂1ρ̂2] � p, where p = |I2|/|I1|, we can
write ρ̂1 = pρ̂2 + (1 − p)ρ̂3, where ρ̂3 does not need to be
better specified. Thus

FU

(
Ropt,(1)

t (ρ̂1),ρ̂q

)2 � pFU

(
Ropt,(1)

t (ρ̂2),ρ̂q

)2 + 1 − p.

(D2)

From the derived inequalities, it follows that
FU (Ropt,(1)

t (ρ̂2),ρ̂q)2 � 1 − ε/p. This leads to the final
result:∥∥Ropt,(1)

t (ρ̂2) − ρ̂q

∥∥
tr � 2

√
1 − FU (Ropt,(1)

t (ρ̂2),ρ̂q)2

� 2
√

ε√
p

. (D3)
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