394 research outputs found
A true concurrent model of smart contracts executions
The development of blockchain technologies has enabled the trustless
execution of so-called smart contracts, i.e. programs that regulate the
exchange of assets (e.g., cryptocurrency) between users. In a decentralized
blockchain, the state of smart contracts is collaboratively maintained by a
peer-to-peer network of mutually untrusted nodes, which collect from users a
set of transactions (representing the required actions on contracts), and
execute them in some order. Once this sequence of transactions is appended to
the blockchain, the other nodes validate it, re-executing the transactions in
the same order. The serial execution of transactions does not take advantage of
the multi-core architecture of modern processors, so contributing to limit the
throughput. In this paper we propose a true concurrent model of smart contract
execution. Based on this, we show how static analysis of smart contracts can be
exploited to parallelize the execution of transactions.Comment: Full version of the paper presented at COORDINATION 202
High-energy-low-temperature technologies for the synthesis of nanoparticles: Microwaves and high pressure
Microwave Solvothermal Synthesis (MSS) is a chemical technology, where apart from possible effects of microwaves on the chemical reaction paths, microwave heating allows the precise planning of a time-temperature schedule, as well as to achieve high super-saturation of the reagents uniformly in the reactor vessel. Thus, MSS is suitable for production of nanoparticles with small grain size distribution and a high degree of crystallinity. A further advantage of the technology is a much lower synthesis temperature than for gas phase, plasma or sol-gel technologies. New reactors have been developed to exploit these advantages of the MSS technology of nanoparticles synthesis and to scale up the production rate. Reactor design and realization has been shown to be decisive and critical for the control of the MSS technology. Examples of oxidic and phosphatic nanoparticles synthesis have been reported
Changes in insulin like growth factors, myostatin and vascular endothelial growth factor in rat musculus latissimus dorsi by poly 3-hydroxybutyrate implants
The present study aimed at researching the synergistic effect between an ectopic bone substitute and surrounding muscle tissue. To describe this effect, changes of insulin like growth factors (IGF1, IGF2), myostatin (GDF8) and vascular endothelial growth factor (VEGF) mRNA content of 12 Wistar-King rats musculus latissimus dorsi with implanted poly-3-hydroxybutyrate (PHB) scaffold were examined after 6 and 12 weeks. At each time interval six rats were killed and implants and surrounding tissues prepared for genetic evaluation. Eight rats without any implants served as controls. RNAwas extracted from homogenized muscle tissue and reverse transcribed. Changes in mRNA content were measured by Real-Time PCR using specific primers for IGF1, IGF2, GDF8 and VEGF. Comparing the level of VEGF mRNA in muscle after 6 and 12 weeks to the controls, we could assess a significant increase of VEGF gene expression (
Concurrent Computing with Shared Replicated Memory
The behavioural theory of concurrent systems states that any concurrent
system can be captured by a behaviourally equivalent concurrent Abstract State
Machine (cASM). While the theory in general assumes shared locations, it
remains valid, if different agents can only interact via messages, i.e. sharing
is restricted to mailboxes. There may even be a strict separation between
memory managing agents and other agents that can only access the shared memory
by sending query and update requests to the memory agents. This article is
dedicated to an investigation of replicated data that is maintained by a memory
management subsystem, whereas the replication neither appears in the requests
nor in the corresponding answers. We show how the behaviour of a concurrent
system with such a memory management can be specified using concurrent
communicating ASMs. We provide several refinements of a high-level ground model
addressing different replication policies and internal messaging between data
centres. For all these refinements we analyse their effects on the runs such
that decisions concerning the degree of consistency can be consciously made.Comment: 23 page
Virulence of Oomycete Pathogens from \u3cem\u3ePhragmites australis\u3c/em\u3e-Invaded and Noninvaded Soils to Seedlings of Wetland Plant Species
Soil pathogens affect plant community structure and function through negative plant-soil feedbacks that may contribute to the invasiveness of non-native plant species. Our understanding of these pathogen-induced soil feedbacks has relied largely on observations of the collective impact of the soil biota on plant populations, with few observations of accompanying changes in populations of specific soil pathogens and their impacts on invasive and noninvasive species. As a result, the roles of specific soil pathogens in plant invasions remain unknown. In this study, we examine the diversity and virulence of soil oomycete pathogens in freshwater wetland soils invaded by non-native Phragmites australis (European common reed) to better understand the potential for soil pathogen communities to impact a range of native and non-native species and influence invasiveness. We isolated oomycetes from four sites over a 2-year period, collecting nearly 500 isolates belonging to 36 different species. These sites were dominated by species of Pythium, many of which decreased seedling survival of a range of native and invasive plants. Despite any clear host specialization, many of the Pythium species were differentially virulent to the native and non-native plant species tested. Isolates from invaded and noninvaded soils were equally virulent to given individual plant species, and no apparent differences in susceptibility were observed between the collective groups of native and non-native plant species
Proton Motive Force-Dependent Hoechst 33342 Transport by the ABC Transporter LmrA of Lactococcus lactis
The fluorescent compound Hoechst 33342 is a substrate for many multidrug resistance (MDR) transporters and is widely used to characterize their transport activity. We have constructed mutants of the adenosine triphosphate (ATP) binding cassette (ABC)-type MDR transporter LmrA of Lactococcus lactis that are defective in ATP hydrolysis. These mutants and wild-type LmrA exhibited an atypical behavior in the Hoechst 33342 transport assay. In membrane vesicles, Hoechst 33342 transport was shown to be independent of the ATPase activity of LmrA, and it was not inhibited by orthovanadate but sensitive to uncouplers that collapse the proton gradient and to N,N'-dicyclohexylcarbodiimide, an inhibitor of the F0F1-ATPase. In contrast, transport of Hoechst 33342 by the homologous, heterodimeric MDR transporter LmrCD showed a normal ATP dependence and was insensitive to uncouplers of the proton gradient. With intact cells, expression of LmrA resulted in an increased rate of Hoechst 33342 influx while LmrCD caused a decrease in the rate of Hoechst 33342 influx. Cellular toxicity assays using a triple knockout strain, i.e., L. lactis ΔlmrA ΔlmrCD, demonstrate that expression of LmrCD protects cells against the growth inhibitory effects of Hoechst 33342, while in the presence of LmrA, cells are more susceptible to Hoechst 33342. Our data demonstrate that the LmrA-mediated Hoechst 33342 transport in membrane vesicles is influenced by the transmembrane pH gradient due to a pH-dependent partitioning of Hoechst 33342 into the membrane.
CrossHybDetector: detection of cross-hybridization events in DNA microarray experiments
Background\ud
DNA microarrays contain thousands of different probe sequences represented on their surface. These are designed in such a way that potential cross-hybridization reactions with non-target sequences are minimized. However, given the large number of probes, the occurrence of cross hybridization events cannot be excluded. This problem can dramatically affect the data quality and cause false positive/false negative results.\ud
\ud
Results\ud
CrossHybDetector is a software package aimed at the identification of cross-hybridization events occurred during individual array hybridization, by using the probe sequences and the array intensity values. As output, the software provides the user with a list of array spots potentially 'corrupted' and their associated p-values calculated by Monte Carlo simulations. Graphical plots are also generated, which provide a visual and global overview of the quality of the microarray experiment with respect to cross-hybridization issues.\ud
\ud
Conclusion\ud
CrossHybDetector is implemented as a package for the statistical computing environment R and is freely available under the LGPL license within the CRAN project
Monotonicity of Fitness Landscapes and Mutation Rate Control
A common view in evolutionary biology is that mutation rates are minimised.
However, studies in combinatorial optimisation and search have shown a clear
advantage of using variable mutation rates as a control parameter to optimise
the performance of evolutionary algorithms. Much biological theory in this area
is based on Ronald Fisher's work, who used Euclidean geometry to study the
relation between mutation size and expected fitness of the offspring in
infinite phenotypic spaces. Here we reconsider this theory based on the
alternative geometry of discrete and finite spaces of DNA sequences. First, we
consider the geometric case of fitness being isomorphic to distance from an
optimum, and show how problems of optimal mutation rate control can be solved
exactly or approximately depending on additional constraints of the problem.
Then we consider the general case of fitness communicating only partial
information about the distance. We define weak monotonicity of fitness
landscapes and prove that this property holds in all landscapes that are
continuous and open at the optimum. This theoretical result motivates our
hypothesis that optimal mutation rate functions in such landscapes will
increase when fitness decreases in some neighbourhood of an optimum, resembling
the control functions derived in the geometric case. We test this hypothesis
experimentally by analysing approximately optimal mutation rate control
functions in 115 complete landscapes of binding scores between DNA sequences
and transcription factors. Our findings support the hypothesis and find that
the increase of mutation rate is more rapid in landscapes that are less
monotonic (more rugged). We discuss the relevance of these findings to living
organisms
High-throughput, quantitative analyses of genetic interactions in E. coli.
Large-scale genetic interaction studies provide the basis for defining gene function and pathway architecture. Recent advances in the ability to generate double mutants en masse in Saccharomyces cerevisiae have dramatically accelerated the acquisition of genetic interaction information and the biological inferences that follow. Here we describe a method based on F factor-driven conjugation, which allows for high-throughput generation of double mutants in Escherichia coli. This method, termed genetic interaction analysis technology for E. coli (GIANT-coli), permits us to systematically generate and array double-mutant cells on solid media in high-density arrays. We show that colony size provides a robust and quantitative output of cellular fitness and that GIANT-coli can recapitulate known synthetic interactions and identify previously unidentified negative (synthetic sickness or lethality) and positive (suppressive or epistatic) relationships. Finally, we describe a complementary strategy for genome-wide suppressor-mutant identification. Together, these methods permit rapid, large-scale genetic interaction studies in E. coli
Ursinus College Alumni Journal, August 1963
The President writes • The uses and limitations of words • Commencement 1963 • 3,032 pledge 192,568 • Loyalty Fund committee reorganized • Joseph J. Lynch, college steward • A description of the new dining hall • Chemistry changes • NSF grants for bio profs • Teaching awards • Pilot project: Physics chemistry mathematics • The not-so-ugly American • Best track season in Ursinus history • Double your dollars • Things are looking up • Preliminary thoughts on wills • Reading, writing, and Mazurkiewicz • The augmented Roman alphabet • Edwin C. Myers, \u2764 and Frederic W. Yocum, Jr. \u2764 • Eugene J. Bradford, \u2736 • Robert A. Petersen, \u2760 • Sue Harman, \u2765 • Results of the 1963 Loyalty Fund campaign • The leaders • Contributors to the 1963 Loyalty Fund • Ursinus alumni at Methacton High School • Class notes • Weddings • Births • Necrology • Our role as alumnihttps://digitalcommons.ursinus.edu/alumnijournal/1077/thumbnail.jp
- …