7,523 research outputs found
Numerical Studies of Weakly Stochastic Magnetic Reconnection
We study the effects of turbulence on magnetic reconnection using
three-dimensional numerical simulations. This is the first attempt to test a
model of fast magnetic reconnection proposed by Lazarian & Vishniac (1999),
which assumes the presence of weak, small-scale magnetic field structure near
the current sheet. This affects the rate of reconnection by reducing the
transverse scale for reconnection flows and by allowing many independent flux
reconnection events to occur simultaneously. We performed a number of
simulations to test the dependencies of the reconnection speed, defined as the
ratio of the inflow velocity to the Alfven speed, on the turbulence power, the
injection scale and resistivity. Our results show that turbulence significantly
affects the topology of magnetic field near the diffusion region and increases
the thickness of the outflow region. We confirm the predictions of the Lazarian
& Vishniac model. In particular, we report the growth of the reconnection speed
proportional to ~ V^2, where V is the amplitude of velocity at the injection
scale. It depends on the injection scale l as ~ (l/L)^(2/3), where L is the
size of the system, which is somewhat faster but still roughly consistent with
the theoretical expectations. We also show that for 3D reconnection the Ohmic
resistivity is important in the local reconnection events only, and the global
reconnection rate in the presence of turbulence does not depend on it.Comment: 8 pages, 8 figure
Comparison of FDMA and CDMA for second generation land-mobile satellite communications
Code Division Multiple Access (CDMA) and Frequency Division Multiple Access (FDMA) (both analog and digital) systems capacities are compared on the basis of identical link availabilities and physical propagation models. Parameters are optimized for a bandwidth limited, multibeam environment. For CDMA, the benefits of voice activated carriers, antenna discrimination, polarization reuse, return link power control and multipath suppression are included in the analysis. For FDMA, the advantages of bandwidth efficient modulation/coding combinations, voice activated carriers, polarization reuse, beam placement, and frequency staggering were taken into account
The Cardy-Verlinde formula and entropy of Topological Reissner-Nordstr\"om black holes in de Sitter spaces
In this paper we discuss the question of whether the entropy of cosmological
horizon in Topological Reissner-Nordstr\"om- de Sitter spaces can be described
by the Cardy-Verlinde formula, which is supposed to be an entropy formula of
conformal field theory in any dimension. Furthermore, we find that the entropy
of black hole horizon can also be rewritten in terms of the Cardy-Verlinde
formula for these black holes in de Sitter spaces, if we use the definition due
to Abbott and Deser for conserved charges in asymptotically de Sitter spaces.
Our result is in favour of the dS/CFT correspondence.Comment: 6 pages, accepted for publication in IJMP
A study of secondary music programs in the public schools of communities between 10,000-15,000 population in the United States.
Thesis (Ed.M.)--Boston Universit
Strain gage system evaluation program
A program was conducted to determine the reliability of various strain gage systems when applied to rotating compressor blades in an aircraft gas turbine engine. A survey of current technology strain gage systems was conducted to provide a basis for selecting candidate systems for evaluation. Testing and evaluation was conducted in an F 100 engine. Sixty strain gage systems of seven different designs were installed on the first and third stages of an F 100 engine fan. Nineteen strain gage failures occurred during 62 hours of engine operation, for a survival rate of 68 percent. Of the failures, 16 occurred at blade-to-disk leadwire jumps (84 percent), two at a leadwire splice (11 percent), and one at a gage splice (5 percent). Effects of erosion, temperature, G-loading, and stress levels are discussed. Results of a post-test analysis of the individual components of each strain gage system are presented
Endotaxial Si nanolines in Si(001):H
We present a detailed study of the structural and electronic properties of a
self-assembled silicon nanoline embedded in the H-terminated silicon (001)
surface, known as the Haiku stripe. The nanoline is a perfectly straight and
defect free endotaxial structure of huge aspect ratio; it can grow micrometre
long at a constant width of exactly four Si dimers (1.54nm). Another remarkable
property is its capacity to be exposed to air without suffering any
degradation. The nanoline grows independently of any step edges at tunable
densities, from isolated nanolines to a dense array of nanolines. In addition
to these unique structural characteristics, scanning tunnelling microscopy and
density functional theory reveal a one-dimensional state confined along the
Haiku core. This nanoline is a promising candidate for the long sought after
electronic solid-state one-dimensional model system to explore the fascinating
quantum properties emerging in such reduced dimensionality.Comment: 8 pages, 6 figure
The mixing of interplanetary magnetic field lines: A significant transport effect in studies of the energy spectra of impulsive flares
Using instrumentation on board the ACE spacecraft we describe short-time scale (~3 hour) variations observed in the arrival profiles of ~20 keV nucleon^(–1) to ~2 MeV nucleon^(–1) ions from impulsive solar flares. These variations occurred simultaneously across all energies and were generally not in coincidence with any local magnetic field or plasma signature. These features appear to be caused by the convection of magnetic flux tubes past the observer that are alternately filled and devoid of flare ions even though they had a common flare source at the Sun. In these particle events we therefore have a means to observe and measure the mixing of the interplanetary magnetic field due to random walk. In a survey of 25 impulsive flares observed at ACE between 1997 November and 1999 July these features had an average time scale of 3.2 hours, corresponding to a length of ~0.03 AU. The changing magnetic connection to the flare site sometimes lead to an incomplete observation of a flare at 1 AU; thus the field-line mixing is an important effect in studies of impulsive flare energy spectra
Real Time Relativity: exploration learning of special relativity
Real Time Relativity is a computer program that lets students fly at
relativistic speeds though a simulated world populated with planets, clocks,
and buildings. The counterintuitive and spectacular optical effects of
relativity are prominent, while systematic exploration of the simulation allows
the user to discover relativistic effects such as length contraction and the
relativity of simultaneity. We report on the physics and technology
underpinning the simulation, and our experience using it for teaching special
relativity to first year university students
- …