7,213 research outputs found

    Microprocessor-based single particle calibration of scintillation counter

    Get PDF
    A microprocessor-base set-up is fabricated and tested for the single particle calibration of the plastic scintillator. The single particle response of the scintillator is digitized by an A/D converter, and a 8085 A based microprocessor stores the pulse heights. The digitized information is printed. Facilities for CRT display and cassette storing and recalling are also made available

    A new study on the emission of EM waves from large EAS

    Get PDF
    A method used in locating the core of individual cosmic ray showers is described. Using a microprocessor-based detecting system, the density distribution and hence, energy of each detected shower was estimated

    Identifying the curvaton within MSSM

    Full text link
    We consider inflaton couplings to MSSM flat directions and the thermalization of the inflaton decay products, taking into account gauge symmetry breaking due to flat direction condensates. We then search for a suitable curvaton candidate among the flat directions, requiring an early thermally induced start for the flat direction oscillations to facilitate the necessary curvaton energy density dominance. We demonstrate that the supersymmetry breaking AA-term is crucial for achieving a successful curvaton scenario. Among the many possible candidates, we identify the u1dd{\bf u_1dd} flat direction as a viable MSSM curvaton.Comment: 9 pages. Discussion on the evaporation of condensate added, final version published in JCA

    Supersymmetric Thermalization and Quasi-Thermal Universe: Consequences for Gravitinos and Leptogenesis

    Full text link
    Motivated by our earlier paper \cite{am}, we discuss how the infamous gravitino problem has a natural built in solution within supersymmetry. Supersymmetry allows a large number of flat directions made up of {\it gauge invariant} combinations of squarks and sleptons. Out of many at least {\it one} generically obtains a large vacuum expectation value during inflation. Gauge bosons and Gauginos then obtain large masses by virtue of the Higgs mechanism. This makes the rate of thermalization after the end of inflation very small and as a result the Universe enters a {\it quasi-thermal phase} after the inflaton has completely decayed. A full thermal equilibrium is generically established much later on when the flat direction expectation value has substantially decareased. This results in low reheat temperatures, i.e., TRO(TeV)T_{\rm R}\sim {\cal O}({\rm TeV}), which are compatible with the stringent bounds arising from the big bang nucleosynthesis. There are two very important implications: the production of gravitinos and generation of a baryonic asymmetry via leptogenesis during the quasi-thermal phase. In both the cases the abundances depend not only on an effective temperature of the quasi-thermal phase (which could be higher, i.e., TTRT\gg T_{\rm R}), but also on the state of equilibrium in the reheat plasma. We show that there is no ``thermal gravitino problem'' at all within supersymmetry and we stress on a need of a new paradigm based on a ``quasi-thermal leptogenesis'', because in the bulk of the parameter space the {\it old} thermal leptogenesis cannot account for the observed baryon asymmetry.Comment: 53 pages. Final version published in JCA

    Separable and non-separable multi-field inflation and large non-Gaussianity

    Full text link
    In this paper we provide a general framework based on δN\delta N formalism to estimate the cosmological observables pertaining to the cosmic microwave background radiation for non-separable potentials, and for generic \emph{end of inflation} boundary conditions. We provide analytical and numerical solutions to the relevant observables by decomposing the cosmological perturbations along the curvature and the isocurvature directions, \emph{instead of adiabatic and entropy directions}. We then study under what conditions large bi-spectrum and tri-spectrum can be generated through phase transition which ends inflation. In an illustrative example, we show that large fNLO(80)f_{NL}\sim {\cal O}(80) and τNLO(20000)\tau_{NL}\sim {\cal O}(20000) can be obtained for the case of separable and non-separable inflationary potentials.Comment: 21 pages, 6 figure

    Coexisting orders in the quarter-filled Hubbard chain with elastic deformations

    Full text link
    The electronic properties of the quarter-filled extended Peierls-Holstein-Hubbard model that includes lattice distortions and molecular deformations are investigated theoretically using the bosonization approach. We predict the existence of a wide variety of charge-elastic phases depending of the values of the Peierls and Holstein couplings. We include the effect of the Peierls deformation in the nearest-neighbor repulsion V, that may be present in real materials where Coulomb interactions depend strongly on the distance, and we show that the phase diagram changes substantially for large V when this term is taken into account.Comment: 6 pages, 3 figure

    Deducing correlation parameters from optical conductivity in the Bechgaard salts

    Full text link
    Numerical calculations of the kinetic energy of various extensions of the one-dimensional Hubbard model including dimerization and repulsion between nearest neighbours are reported. Using the sum rule that relates the kinetic energy to the integral of the optical conductivity, one can determine which parameters are consistent with the reduction of the infrared oscillator strength that has been observed in the Bechgaard salts. This leads to improved estimates of the correlation parameters for both the TMTSF and TMTTF series.Comment: 12 pages, latex, figures available from the author

    A-term inflation and the smallness of the neutrino masses

    Full text link
    The smallness of the neutrino masses may be related to inflation. The minimal supersymmetric Standard Model (MSSM) with small Dirac neutrino masses already has all the necessary ingredients for a successful inflation. In this model the inflaton is a gauge-invariant combination of the right-handed sneutrino, the slepton, and the Higgs field, which generate a flat direction suitable for inflation if the Yukawa coupling is small enough. In a class of models, the observed microwave background anisotropy and the tilted power spectrum are related to the neutrino masses.Comment: 13 pages, 1 figure, uses JHEP3.cls, minor modifications, final version accepted for publication in JCA

    Casimir energy and a cosmological bounce

    Full text link
    We review different computation methods for the renormalised energy momentum tensor of a quantised scalar field in an Einstein Static Universe. For the extensively studied conformally coupled case we check their equivalence; for different couplings we discuss violation of different energy conditions. In particular, there is a family of masses and couplings which violate the weak and strong energy conditions but do not lead to spacelike propagation. Amongst these cases is that of a minimally coupled massless scalar field with no potential. We also point out a particular coupling for which a massless scalar field has vanishing renormalised energy momentum tensor. We discuss the backreaction problem and in particular the possibility that this Casimir energy could both source a short inflationary epoch and avoid the big bang singularity through a bounce.Comment: 13 pages, LaTeX, 8 figure
    corecore