The electronic properties of the quarter-filled extended
Peierls-Holstein-Hubbard model that includes lattice distortions and molecular
deformations are investigated theoretically using the bosonization approach. We
predict the existence of a wide variety of charge-elastic phases depending of
the values of the Peierls and Holstein couplings. We include the effect of the
Peierls deformation in the nearest-neighbor repulsion V, that may be present in
real materials where Coulomb interactions depend strongly on the distance, and
we show that the phase diagram changes substantially for large V when this term
is taken into account.Comment: 6 pages, 3 figure