11 research outputs found

    High Pressure Torsion : From Laminar Flow to Turbulence

    Get PDF

    Ferromagnetic behaviour of ZnO: The role of grain boundaries

    Get PDF
    The possibility to attain ferromagnetic properties in transparent semiconductor oxides such as ZnO is very promising for future spintronic applications. We demonstrate in this review that ferromagnetism is not an intrinsic property of the ZnO crystalline lattice but is that of ZnO/ZnO grain boundaries. If a ZnO polycrystal contains enough grain boundaries, it can transform into the ferromagnetic state even without doping with “magnetic atoms” such as Mn, Co, Fe or Ni. However, such doping facilitates the appearance of ferromagnetism in ZnO. It increases the saturation magnetisation and decreases the critical amount of grain boundaries needed for FM. A drastic increase of the total solubility of dopants in ZnO with decreasing grain size has been also observed. It is explained by the multilayer grain boundary segregation

    Discrimination of time series data

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN004685 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    The topological soliton in Peierls semimetal Sb

    No full text
    Abstract Sb is a three-dimensional Peierls insulator. The Peierls instability gives rise to doubling of the translational period along the [111] direction and alternating van der Waals and covalent bonding between (111) atomic planes. At the (111) surface of Sb, the Peierls condition is violated, which in theory can give rise to properties differing from the bulk. The atomic and electronic structure of the (111) surface of Sb have been simulated by density functional theory calculations. We have considered the two possible (111) surfaces, containing van der Waals dangling bonds or containing covalent dangling bonds. In the models, the surfaces are infinite and the structure is defect free. Structural optimization of the model containing covalent dangling bonds results in strong deformation, which is well described by a topological soliton within the Su–Schrieffer–Heeger model centered about 25 Å below the surface. The electronic states associated with the soliton see an increase in the density of states (DOS) at the Fermi level by around an order of magnitude at the soliton center. Scanning tunneling microscopy and spectroscopy (STM/STS) measurements reveal two distinct surface regions, indicating that there are different surface regions cleaving van der Waals and covalent bonds. The DFT is in good agreement with the STM/STS experiments

    Strengthening zones in the Co matrix of WC-Co cemented carbides

    No full text
    For conventional structural and tool materials, in particular WC-Co cemented carbides, hardness and wear-resistance can usually be increased only at the expense of toughness and strength. For the first time we have achieved a dramatically increased combination of hardness, wear-resistance, fracture toughness and strength as a result of precipitation of extremely fine nanoparticles in the cobalt binder of cemented carbides. These nanoparticles are similar to 3 nm in size, coherent with the Co matrix and consist of a metastable phase. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.Peer Reviewe

    VOx Phase Mixture of Reduced Single Crystalline V2O5: VO2 Resistive Switching

    No full text
    The strongly correlated electron material, vanadium dioxide (VO2), has seen considerable attention and research application in metal-oxide electronics due to its metal-to-insulator transition close to room temperature. Vacuum annealing a V2O5(010) single crystal results in Wadsley phases (VnO2n+1, n > 1) and VO2. The resistance changes by a factor of 20 at 342 K, corresponding to the metal-to-insulator phase transition of VO2. Macroscopic voltage-current measurements with a probe separation on the millimetre scale result in Joule heating-induced resistive switching at extremely low voltages of under a volt. This can reduce the hysteresis and facilitate low temperature operation of VO2 devices, of potential benefit for switching speed and device stability. This is correlated to the low resistance of the system at temperatures below the transition. High-resolution transmission electron microscopy measurements reveal a complex structural relationship between V2O5, VO2 and V6O13 crystallites. Percolation paths incorporating both VO2 and metallic V6O13 are revealed, which can reduce the resistance below the transition and result in exceptionally low voltage resistive switching
    corecore