10 research outputs found

    Traduction locale et dynamique dans les prolongements astrocytaires périsynaptiques de l'hippocampe

    No full text
    Les astrocytes sont les cellules gliales les plus nombreuses du systĂšme nerveux central. Elles prĂ©sentent une morphologie trĂšs ramifiĂ©e, envoyant des prolongements vers les vaisseaux sanguins oĂč elles rĂ©gulent les fonctions vasculaires, et vers les neurones oĂč elles contrĂŽlent la formation, la maturation et l’élimination des synapses. Les mĂ©canismes sous-jacents Ă  ces fonctions polarisĂ©es restent peu connus. La prĂ©sence d’une traduction locale aux interfaces pĂ©rivasculaire et pĂ©risynaptique des astrocytes a Ă©tĂ© rĂ©cemment dĂ©crite. L’objectif de cette thĂšse Ă©tait donc de dĂ©finir le rĂ©pertoire complet d’ARNm polysomaux Ă  l’interface pĂ©risynaptique des astrocytes de l’hippocampe dorsale, une rĂ©gion du cerveau impliquĂ©e dans la mĂ©moire contextuelle. Nous avons ensuite comparĂ© la distribution relative d’une vingtaine d’ARNm polysomaux entre les prolongements pĂ©risynaptiques et pĂ©rivasculaires. Les astrocytes sont connus pour leur contribution aux mĂ©canismes d’apprentissage et de mĂ©moire. Nous avons donc Ă©tudiĂ© le rĂŽle physiologique de la traduction locale dans les prolongements pĂ©risynaptiques astrocytaires en observant les changements de traduction locale chez des souris exposĂ©es Ă  une tĂąche de conditionnement Ă  la peur. Cette thĂšse rĂ©vĂšle, pour la premiĂšre fois, des changements de traduction locale liĂ©s Ă  l’activitĂ© neuronale dans les prolongements pĂ©risynaptiques astrocytaires.Astrocytes are the most numerous glial cells in the central nervous system. They display a highly ramified morphology, with processes extending towards blood vessels, where they regulate vascular functions, and towards neurons where they control the formation, maturation and elimination of synapses. The mechanisms sustaining these polarized functions in astrocytes remain elusive. Local translation was recently identified in astroglial processes, at both the perisynaptic and perivascular interface. We therefore aimed at defining the entire repertoire of polysomal mRNAs translated in perisynaptic processes of the dorsal hippocampus, a region of the brain involved in contextual memory. We then compared the relative distribution of polysomal transcripts between perivascular and perisynaptic processes of hippocampal astrocytes. Finally, as astrocytes are known to contribute to memory and learning, we investigated the physiological implication of perisynaptic astrocytic protein synthesis in these processes by subjecting mice to a contextual fear conditioning paradigm and assessing the resulting changes in local translation. This thesis highlights, for the first time, the presence of activity-dependent local translation in perisynaptic processes of astrocytes

    Traduction locale et dynamique dans les prolongements astrocytaires périsynaptiques de l'hippocampe

    No full text
    Astrocytes are the most numerous glial cells in the central nervous system. They display a highly ramified morphology, with processes extending towards blood vessels, where they regulate vascular functions, and towards neurons where they control the formation, maturation and elimination of synapses. The mechanisms sustaining these polarized functions in astrocytes remain elusive. Local translation was recently identified in astroglial processes, at both the perisynaptic and perivascular interface. We therefore aimed at defining the entire repertoire of polysomal mRNAs translated in perisynaptic processes of the dorsal hippocampus, a region of the brain involved in contextual memory. We then compared the relative distribution of polysomal transcripts between perivascular and perisynaptic processes of hippocampal astrocytes. Finally, as astrocytes are known to contribute to memory and learning, we investigated the physiological implication of perisynaptic astrocytic protein synthesis in these processes by subjecting mice to a contextual fear conditioning paradigm and assessing the resulting changes in local translation. This thesis highlights, for the first time, the presence of activity-dependent local translation in perisynaptic processes of astrocytes.Les astrocytes sont les cellules gliales les plus nombreuses du systĂšme nerveux central. Elles prĂ©sentent une morphologie trĂšs ramifiĂ©e, envoyant des prolongements vers les vaisseaux sanguins oĂč elles rĂ©gulent les fonctions vasculaires, et vers les neurones oĂč elles contrĂŽlent la formation, la maturation et l’élimination des synapses. Les mĂ©canismes sous-jacents Ă  ces fonctions polarisĂ©es restent peu connus. La prĂ©sence d’une traduction locale aux interfaces pĂ©rivasculaire et pĂ©risynaptique des astrocytes a Ă©tĂ© rĂ©cemment dĂ©crite. L’objectif de cette thĂšse Ă©tait donc de dĂ©finir le rĂ©pertoire complet d’ARNm polysomaux Ă  l’interface pĂ©risynaptique des astrocytes de l’hippocampe dorsale, une rĂ©gion du cerveau impliquĂ©e dans la mĂ©moire contextuelle. Nous avons ensuite comparĂ© la distribution relative d’une vingtaine d’ARNm polysomaux entre les prolongements pĂ©risynaptiques et pĂ©rivasculaires. Les astrocytes sont connus pour leur contribution aux mĂ©canismes d’apprentissage et de mĂ©moire. Nous avons donc Ă©tudiĂ© le rĂŽle physiologique de la traduction locale dans les prolongements pĂ©risynaptiques astrocytaires en observant les changements de traduction locale chez des souris exposĂ©es Ă  une tĂąche de conditionnement Ă  la peur. Cette thĂšse rĂ©vĂšle, pour la premiĂšre fois, des changements de traduction locale liĂ©s Ă  l’activitĂ© neuronale dans les prolongements pĂ©risynaptiques astrocytaires

    Connexin 30 is expressed in a subtype of mouse brain pericytes

    No full text
    International audienc

    AstroDot -a new method for studying the spatial distribution of mRNA in astrocytes

    No full text
    International audienceAstrocytes are morphologically complex and use local translation to regulate distal functions. To study the distribution of mRNA in astrocytes, we combined mRNA detection via in situ hybridization with immunostaining of the astrocyte-specific intermediate filament glial fibrillary acidic protein (GFAP). mRNAs at the level of GFAP-immunolabelled astrocyte somata, and large and fine processes were analysed using AstroDot, an ImageJ plug-in and the R package AstroStat. Taking the characterization of mRNAs encoding GFAP-α and GFAP-Ύ isoforms as a proof of concept, we showed that they mainly localized on GFAP processes. In the APPswe/PS1dE9 mouse model of Alzheimer's disease, the density and distribution of both α and Ύ forms of Gfap mRNA changed as a function of the region of the hippocampus and the astrocyte's proximity to amyloid plaques. To validate our method, we confirmed that the ubiquitous Rpl4 (large subunit ribosomal protein 4) mRNA was present in astrocyte processes as well as in microglia processes immunolabelled for ionized calcium binding adaptor molecule 1 (Iba1; also known as IAF1). In summary, this novel set of tools allows the characterization of mRNA distribution in astrocytes and microglia in physiological or pathological settings

    Local Translation in Perisynaptic Astrocytic Processes Is Specific and Changes after Fear Conditioning

    No full text
    International audienceLocal translation is a conserved mechanism conferring cells the ability to quickly respond to local stimuli. Inthe brain, it has been recently reported in astrocytes, whose fine processes contact blood vessels and synapses.Yet the specificity and regulation of astrocyte local translation remain unknown. We study hippocampalperisynaptic astrocytic processes (PAPs) and show that they contain the machinery for translation. Usinga refined immunoprecipitation technique, we characterize the entire pool of ribosome-bound mRNAs in PAPsand compare it with the one expressed in the whole astrocyte. We find that a specific pool of mRNAs is highlypolarized at the synaptic interface. These transcripts encode an unexpected molecular repertoire, composedof proteins involved in iron homeostasis, translation, cell cycle, and cytoskeleton. Remarkably, we observealterations in global RNA distribution and ribosome-bound status of some PAP-enriched transcripts afterfear conditioning, indicating the role of astrocytic local translation in memory and learning

    Translation in astrocyte distal processes sets molecular heterogeneity at the gliovascular interface

    No full text
    International audienceAstrocytes send out long processes that are terminated by endfeet at the vascular surface and regulate vascular functions as well as homeostasis at the vascular interface. To date, the astroglial mechanisms underlying these functions have been poorly addressed. Here we demonstrate that a subset of messenger RNAs is distributed in astrocyte endfeet. We identified, among this transcriptome, a pool of messenger RNAs bound to ribosomes, the endfeetome, that primarily encodes for secreted and membrane proteins. We detected nascent protein synthesis in astrocyte endfeet. Finally, we determined the presence of smooth and rough endoplasmic reticulum and the Golgi apparatus in astrocyte perivascular processes and endfeet, suggesting for local maturation of membrane and secreted proteins. These results demonstrate for the first time that protein synthesis occurs in astrocyte perivascular distal processes that may sustain their structural and functional polarization at the vascular interface

    Translation in astrocyte distal processes sets molecular heterogeneity at the gliovascular interface

    No full text
    International audienceAstrocytes send out long processes that are terminated by endfeet at the vascular surface and regulate vascular functions as well as homeostasis at the vascular interface. To date, the astroglial mechanisms underlying these functions have been poorly addressed. Here we demonstrate that a subset of messenger RNAs is distributed in astrocyte endfeet. We identified, among this transcriptome, a pool of messenger RNAs bound to ribosomes, the endfeetome, that primarily encodes for secreted and membrane proteins. We detected nascent protein synthesis in astrocyte endfeet. Finally, we determined the presence of smooth and rough endoplasmic reticulum and the Golgi apparatus in astrocyte perivascular processes and endfeet, suggesting for local maturation of membrane and secreted proteins. These results demonstrate for the first time that protein synthesis occurs in astrocyte perivascular distal processes that may sustain their structural and functional polarization at the vascular interface
    corecore