6 research outputs found

    The adsorption and charge-transfer dynamics of model dye-sensitised solar cell surfaces

    Get PDF
    In this thesis, the dye molecule cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)-ruthenium(II) (N3) is studied on the rutile TiO2(110) and Au(111) surfaces. The molecules were deposited onto the surfaces using an ultra-high vacuum (UHV) electrospray deposition system. Thermally labile molecules such as N3 cannot be deposited using the typical method of thermal sublimation, so development of this deposition technique was a necessary step for entirely in situ experiments. The geometric and electronic structure of the samples are characterised using core-level and valence band photoemission spectroscopy, x-ray absorption fine structure spectroscopy, density functional theory, resonant x-ray emission spectroscopy and scanning tunnelling microscopy. These reveal that N3 bonds to TiO2(110) by deprotonation of the carboxyl groups of one bi-isonicotinic acid ligand so that its oxygen atoms bond to titanium atoms of the substrate, and one of the thiocyanate groups bonds via a sulphur atom to an oxygen atom of the substrate. N3 bonds to Au(111) via sulphur atoms with no deprotonation of the carboxylic groups, and at low coverages decorates the Au(111) herringbone reconstruction. For N3 on TiO2, a consideration of the energetics in relation to optical absorption is used to identify the main photoexcitation channel between occupied and unoccupied molecular orbitals in this system, and also to quantify the relative binding energies of core and valence excitons. For N3 on Au(111), the energetics show that the highest occupied molecular orbital overlaps with the Au conduction band. The transfer of charge between the N3 molecule and the TiO2(110) and Au(111) surfaces was studied using resonant photoemission spectroscopy and resonant x-ray emission spectroscopy. These techniques, combined with knowledge gained about the geometric and electronic structure, are used to determine the locations and electronic levels of N3 from which charge is readily transferred to the substrate. The core-hole clock implementation of resonant photoemission spectroscopy is used to reveal that electron delocalisation from N3 to TiO2(110) occurs within 16 femtoseconds

    Charge transfer from an adsorbed ruthenium-based photosensitizer through an ultra-thin aluminium oxide layer and into a metallic substrate

    Get PDF
    The interaction of the dye molecule N3 (cis-bis(isothiocyanato)bis(2,2-bipyridyl-4,4′-dicarbo-xylato)-ruthenium(II)) with the ultra-thin oxide layer on a AlNi(110) substrate, has been studied using synchrotron radiation based photoelectron spectroscopy, resonant photoemission spectroscopy, and near edge X-ray absorption fine structure spectroscopy. Calibrated X-ray absorption and valence band spectra of the monolayer and multilayer coverages reveal that charge transfer is possible from the molecule to the AlNi(110) substrate via tunnelling through the ultra-thin oxide layer and into the conduction band edge of the substrate. This charge transfer mechanism is possible from the LUMO+2 and 3 in the excited state but not from the LUMO, therefore enabling core-hole clock analysis, which gives an upper limit of 6.0 ± 2.5 fs for the transfer time. This indicates that ultra-thin oxide layers are a viable material for use in dye-sensitized solar cells, which may lead to reduced recombination effects and improved efficiencies of future devices

    IMPACT-Global Hip Fracture Audit: Nosocomial infection, risk prediction and prognostication, minimum reporting standards and global collaborative audit. Lessons from an international multicentre study of 7,090 patients conducted in 14 nations during the COVID-19 pandemic

    Get PDF

    The adsorption and charge-transfer dynamics of model dye-sensitised solar cell surfaces

    Get PDF
    In this thesis, the dye molecule cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)-ruthenium(II) (N3) is studied on the rutile TiO2(110) and Au(111) surfaces. The molecules were deposited onto the surfaces using an ultra-high vacuum (UHV) electrospray deposition system. Thermally labile molecules such as N3 cannot be deposited using the typical method of thermal sublimation, so development of this deposition technique was a necessary step for entirely in situ experiments. The geometric and electronic structure of the samples are characterised using core-level and valence band photoemission spectroscopy, x-ray absorption fine structure spectroscopy, density functional theory, resonant x-ray emission spectroscopy and scanning tunnelling microscopy. These reveal that N3 bonds to TiO2(110) by deprotonation of the carboxyl groups of one bi-isonicotinic acid ligand so that its oxygen atoms bond to titanium atoms of the substrate, and one of the thiocyanate groups bonds via a sulphur atom to an oxygen atom of the substrate. N3 bonds to Au(111) via sulphur atoms with no deprotonation of the carboxylic groups, and at low coverages decorates the Au(111) herringbone reconstruction. For N3 on TiO2, a consideration of the energetics in relation to optical absorption is used to identify the main photoexcitation channel between occupied and unoccupied molecular orbitals in this system, and also to quantify the relative binding energies of core and valence excitons. For N3 on Au(111), the energetics show that the highest occupied molecular orbital overlaps with the Au conduction band. The transfer of charge between the N3 molecule and the TiO2(110) and Au(111) surfaces was studied using resonant photoemission spectroscopy and resonant x-ray emission spectroscopy. These techniques, combined with knowledge gained about the geometric and electronic structure, are used to determine the locations and electronic levels of N3 from which charge is readily transferred to the substrate. The core-hole clock implementation of resonant photoemission spectroscopy is used to reveal that electron delocalisation from N3 to TiO2(110) occurs within 16 femtoseconds.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Cardiovascular Efficacy and Safety of Bococizumab in High-Risk Patients

    No full text
    BACKGROUN
    corecore