295 research outputs found

    The oxidative damage to the human telomere: effects of 5-hydroxymethyl-2'-deoxyuridine on telomeric G-quadruplex structures

    Get PDF
    As part of the genome, human telomeric regions can be damaged by the chemically reactive molecules responsible for oxidative DNA damage. Considering that G-quadruplex structures have been proven to occur in human telomere regions, several studies have been devoted to investigating the effect of oxidation products on the properties of these structures. However only investigations concerning the presence in G-quadruplexes of the main oxidation products of deoxyguanosine and deoxyadenosine have appeared in the literature. Here, we investigated the effects of 5-hydroxymethyl-2’-deoxyuridine (5-hmdU), one of the main oxidation products of T, on the physical–chemical properties of the G-quadruplex structures formed by two human telomeric sequences. Collected calorimetric, circular dichroism and electrophoretic data suggest that, in contrast to most of the results on other damage, the replacement of a T with a 5-hmdU results in only negligible effects on structural stability. Reported results and other data from literature suggest a possible protecting effect of the loop residues on the other parts of the G-quadruplexes

    Exploring the binding of d(GGGT)4 to the HIV-1 integrase: An approach to investigate G-quadruplex aptamer/target protein interactions.

    Get PDF
    The aptamer d(GGGT)4 (T30923 or T30695) forms a 5'-5' dimer of two stacked parallel G-quadruplexes, each characterized by three G-tetrads and three single-thymidine reversed-chain loops. This aptamer has been reported to exhibit anti-HIV activity by targeting the HIV integrase, a viral enzyme responsible for the integration of viral DNA into the host-cell genome. However, information concerning the aptamer/ target interaction is still rather limited. In this communication we report microscale thermophoresis investigations on the interaction between the HIV-1 integrase and d(GGGT)4 aptamer analogues containing abasic sites singly replacing thymidines in the original sequence. This approach has allowed the identification of which part of the aptamer G-quadruplex structure is mainly involved in the interaction with the protei

    Twin hydroxymethyluracil-A base pair steps define the binding site for the DNA-bending protein TF1

    Get PDF
    The DNA-bending protein TF1 is the Bacillus subtilis bacteriophage SPO1- encoded homolog of the bacterial HU proteins and the Escherichia coli integration host factor. We recently proposed that TF1, which binds with high affinity (K(d) was ~3 nM) to preferred sites within the hydroxymethyluracil (hmU)-containing phage genome, identifies its binding sites based on sequence-dependent DNA flexibility. Here, we show that two hmU-A base pair steps coinciding with two previously proposed sites of DNA distortion are critical for complex formation. The affinity of TF1 is reduced 10-fold when both of these hmU-A base pair steps are replaced with A-hmU, G-C, or C-G steps; only modest changes in affinity result when substitutions are made at other base pairs of the TF1 binding site. Replacement of all hmU residues with thymine decreases the affinity of TF1 greatly; remarkably, the high affinity is restored when the two hmU-A base pair steps corresponding to previously suggested sites of distortion are reintroduced into otherwise T- containing DNA. T-DNA constructs with 3-base bulges spaced apart by 9 base pairs of duplex also generate nM affinity of TF1. We suggest that twin hmU-A base pair steps located at the proposed sites of distortion are key to target site selection by TF1 and that recognition is based largely, if not entirely, on sequence-dependent DNA flexibility

    Monomolecular G-quadruplex structures with inversion of polarity sites: new topologies and potentiality

    Get PDF
    In this paper, we report investigations, based on circular dichroism, nuclear magnetic resonance spectroscopy and electrophoresis methods, on three oligonucleotide sequences, each containing one 3- 3 and two 5-5 inversion of polarity sites, and four G-runs with a variable number of residues, namely two, three and four (mTG2T, mTG3T andmTG4T with sequence 3-TGnT-5-5-TGnT-3-3-TGnT-5-5-TGnT-3 in which n = 2, 3 and 4, respectively), in comparison with their canonical counterparts (TGnT)4 (n = 2, 3 and 4). Oligonucleotides mTG3T and mTG4 T have been proven to form very stable unprecedented monomolecular parallel G-quadruplex structures, characterized by three side loops containing the inversion of polarity sites. Both G-quadruplexes have shown an all-syn G-tetrad, while the other guanosines adopt anti glycosidic conformations. All oligonucleotides investigated have shown a noteworthy antiproliferative activity against lung cancer cell line Calu 6 and colorectal cancer cell line HCT-116 p53−/−. Interestingly, mTG3T andmTG4T have proven to be mostly resistant to nucleases in a fetal bovine serum assay. The whole of the data suggest the involvement of specific pathways and targets for the biological activity

    Improved thrombin binding aptamer analogues containing inversion of polarity sites: structural effects of extra-residues at the ends

    Get PDF
    In this paper, we report the investigations, based on NMR, molecular modelling, CD measurements and electrophoresis, of thrombin binding aptamer (TBA) analogues containing an extra-residue at the 3’-end or at both the ends of the original TBA sequence, linked through 3’–3’ or 5’–5’ phosphodiester bonds. The data indicate that most of the modified aptamers investigated adopt chair-like G-quadruplex structures very similar to that of the TBA and that stacking interactions occur between the 3’–3’ or 5’–5’ extra residues and the deoxyguanosines of the upper G-tetrad. A comparison of the thermodynamic data of TBA-A and TBA-T containing a 3’–3’ extra residue and their canonical versions clearly indicates that the 3’–3’ phosphodiester bond is fundamental in endowing the modified aptamers with remarkably higher thermal stabilities than the original TBA

    Selective Binding of Distamycin A Derivative to G-Quadruplex Structure [d(TGGGGT)]4

    Get PDF
    Guanine-rich nucleic acid sequences can adopt G-quadruplex structures stabilized by layers of four Hoogsteen-paired guanine residues. Quadruplex-prone sequences are found in many regions of human genome and in the telomeres of all eukaryotic organisms. Since small molecules that target G-quadruplexes have been found to be effective telomerase inhibitors, the identification of new specific ligands for G-quadruplexes is emerging as a promising approach to develop new anticancer drugs. Distamycin A is known to bind to AT-rich sequences of duplex DNA, but it has recently been shown to interact also with G-quadruplexes. Here, isothermal titration calorimetry (ITC) and NMR techniques have been employed to characterize the interaction between a dicationic derivative of distamycin A (compound 1) and the [d(TGGGGT)]4 quadruplex. Additionally, to compare the binding behaviour of netropsin and compound 1 to the same target, a calometric study of the interaction between netropsin and [d(TGGGGT)]4 has been performed. Experiments show that netropsin and compound 1 are able to bind to [d(TGGGGT)]4 with good affinity and comparable thermodynamic profiles. In both cases the interactions are entropically driven processes with a small favourable enthalpic contribution. Interestingly, the structural modifications of compound 1 decrease the affinity of the ligand toward the duplex, enhancing the selectivity

    Synthesis and Biological Evaluation of a New Structural Simplified Analogue of cADPR, a Calcium-Mobilizing Secondary Messenger Firstly Isolated from Sea Urchin Eggs

    Get PDF
    Herein, we reported on the synthesis of cpIPP, which is a new structurally-reduced analogue of cyclic ADP-ribose (cADPR), a potent Ca2+-releasing secondary messenger that was firstly isolated from sea urchin eggs extracts. To obtain cpIPP the "northern" ribose of cADPR was replaced by a pentyl chain and the pyrophosphate moiety by a phophono-phosphate anhydride. The effect of the presence of the new phosphono-phosphate bridge on the intracellular Ca2+release induced by cpIPP was assessed in PC12 neuronal cells in comparison with the effect of the pyrophosphate bridge of the structurally related cyclic N1-butylinosine diphosphate analogue (cbIDP), which was previously synthesized in our laboratories, and with that of the linear precursor of cpIPP, which, unexpectedly, revealed to be the only one provided with Ca2+release properties

    Site-specific replacement of the thymine methyl group by fluorine in thrombin binding aptamer significantly improves structural stability and anticoagulant activity

    Get PDF
    Here we report investigations, based on circular dichroism, nuclear magnetic resonance spectroscopy, molecular modelling, differential scanning calorimetry and prothrombin time assay, on analogues of the thrombin binding aptamer (TBA) in which individual thymidines were replaced by 5-fluoro-2'-deoxyuridine residues. The whole of the data clearly indicate that all derivatives are able to fold in a G-quadruplex structure very similar to the 'chair-like' conformation typical of the TBA. However, only ODNs TBA-F4: and TBA-F13: have shown a remarkable improvement both in the melting temperature (ΔTm ≈ +10) and in the anticoagulant activity in comparison with the original TBA. These findings are unusual, particularly considering previously reported studies in which modifications of T4 and T13 residues in TBA sequence have clearly proven to be always detrimental for the structural stability and biological activity of the aptamer. Our results strongly suggest the possibility to enhance TBA properties through tiny straightforward modifications

    Synthesis, structural studies and biological properties of new TBA analogues containing an acyclic nucleotide

    Get PDF
    A new modified acyclic nucleoside, namely N(1)-(3-hydroxy-2-hydroxymethyl-2-methylpropyl)-thymidine, was synthesized and transformed into a building block useful for oligonucleotide (ON) automated synthesis. A series of modified thrombin binding aptamers (TBAs) in which the new acyclic nucleoside replaces, one at the time, the thymidine residues were then synthesized and characterized by UV, CD, MS, and (1)H NMR. The biological activity of the resulting TBAs was tested by Prothrombin Time assay (PT assay) and by purified fibrinogen clotting assay. From a structural point of view, nearly all the new TBA analogues show a similar behavior as the unmodified counterpart, being able to fold into a bimolecular or monomolecular quadruplex structure depending on the nature of monovalent cations (sodium or potassium) coordinated in the quadruplex core. From the comparison of structural and biological data, some important structure-activity relationships emerged, particularly when the modification involved the TT loops. In agreement with previous studies we found that the folding ability of TBA analogues is more affected by modifications involving positions 4 and 13, rather than positions 3 and 12. On the other hand, the highest anti-thrombin activities were detected for aptamers containing the modification at T13 or T12 positions, thus indicating that the effects produced by the introduction of the acyclic nucleoside on the biological activity are not tightly connected with structure stabilities. It is noteworthy that the modification at T7 produces an ON being more stable and active than the natural TBA

    Outstanding effects on antithrombin activity of modified TBA diastereomers containing an optically pure acyclic nucleotide analogue

    Get PDF
    Herein, we report optically pure modified acyclic nucleosides as ideal probes for aptamer modification. These new monomers offer unique advantages in exploring the role played in thrombin inhibition by a single residue modification at key positions of the TBA structure
    corecore