ROYAL SOCIETY
OF CHEMISTRY

Organic &
Biomolecular Chemistry

PAPER

CrossMark
& click for updates

Cite this: Org. Biomol. Chem., 2016,
14,7707

Improved thrombin binding aptamer analogues
containing inversion of polarity sites: structural
effects of extra-residues at the endsf

A. Virgilio,® T. Amato,® L. Petraccone,” R. Filosa,“ M. Varra,® L. Mayol,® V. Esposito*?
and A. Galeone*®

In this paper, we report the investigations, based on NMR, molecular modelling, CD measurements and
electrophoresis, of thrombin binding aptamer (TBA) analogues containing an extra-residue at the 3'-end
or at both the ends of the original TBA sequence, linked through 3'-3" or 5'-5" phosphodiester bonds.
The data indicate that most of the modified aptamers investigated adopt chair-like G-quadruplex struc-
tures very similar to that of the TBA and that stacking interactions occur between the 3'-3" or 5'-5" extra
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residues and the deoxyguanosines of the upper G-tetrad. A comparison of the thermodynamic data of
TBA-A and TBA-T containing a 3'-3" extra residue and their canonical versions clearly indicates that the
3'-3' phosphodiester bond is fundamental in endowing the modified aptamers with remarkably higher
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Introduction

Aptamers are usually DNA or RNA ligands endowed with high
affinity and specificity toward their targets. Thanks to these
properties, aptamers can find applications in both diagnostics
and therapeutics, and represent a powerful tool in many
research fields." Not surprisingly, several interesting aptamers
adopt G-quadruplex structures,” probably due to the high
thermal stability characterizing this non-canonical nucleic
acid conformation. Among these, the anticoagulant thrombin
binding aptamer (TBA) shows peculiar structural features
since it adopts a “chair-like” G-quadruplex conformation
characterized by only two overlapping G-tetrads and three
lateral loops (Fig. 1).*> Although the TBA is one of the first apta-
mers to be discovered, it still arouses therapeutic interest and
is the subject of several investigations, particularly taking
into account that it is also endowed with antiproliferative
properties.” This aptamer has been subjected to several chemi-
cal modifications concerning both the bases and the sugar-
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thermal stabilities than the original TBA.

phosphate backbone, mostly aimed at (i) enhancing its affinity
to thrombin; (ii) making it resistant in biological environ-
ments; (iii) improving its thermal stability under physiological
conditions; (iv) supporting the studies on the aptamer-target
interaction and, recently, (v) switching its activity from anti-
coagulant to antiproliferative.” A convincing number of studies
have indicated that the loops are the parts of the TBA mainly
involved in the interaction with thrombin. Therefore, most of
the modifications aimed at increasing the affinity to the target
and, then, the anticoagulant activity, have involved residues in
loops. For example, TBA analogues have been investigated in
which thymidine derivatives have replaced natural thymidines
in the loops. Among these are the locked nucleic acid residues
(LNA-T),® unlocked nucleic acid residues (UNA-U)” and other
types of acyclic thymidines,® i-residues,” p- and r-isothymi-
dines," 5-hydroxymethyl-"" and 5-fluoro-2-deoxyuridines."?
On the other hand, specific residues in the loops also contri-
bute to the thermal stability, which in turn, is ultimately
associated to the biological activity, taking into account the
low melting temperature shown by the TBA under physiologi-
cal conditions in which a prevalence of sodium ions occurs.
Generally, enhanced stability or biological activity (or both, in
specific cases) can be obtained by modifying the residues T3,
T7 and T12.”® Conversely, only in one case,'* modifications
concerning residues T4, T13 have resulted in improved pro-
perties of the TBA, while most of the alterations involving
these residues and, sometimes T9, have proven to be detrimen-
tal for both stability and anticoagulant activity.”***'® A minor
amount of research studies have been devoted to improving
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Fig. 1 Schematic representation of the G-quadruplex structures of TBA and TBA-A. Deoxyguanosines in syn and anti glycosidic conformations are
in purple and light blue, respectively. The extra deoxyadenosine is in green. The chemical structures of the 3'-3" and 5'-5' inversion of polarity sites

are reported on the right.

the resistance to nucleases. For example, modified TBAs con-
taining 2'-deoxy-2'-fluoroarabinonucleotide residues,'® i-resi-
dues,’ thiophosphoryl'* or triazole internucleotide bonds"’
have been proposed, although no noteworthy enhancements
of the properties compared to the TBA have been reported in
these cases. Recently, we have proposed a simple modification
that consists of adding an extra-residue at the 3’-end or at both
the ends of the TBA sequence, linked through 3'-3" or 5'-5’
phosphodiester bonds (Table 1)."® An advantage of this
straightforward modification is that it does not affect the TT
loops being mostly responsible for the interaction with the
target protein. In fact, apart from endowing all modified apta-
mers with a remarkable resistance in biological environments,
this approach has also provided some TBA derivatives with
outstanding higher thermal stabilities and improved affinities
to thrombin, in comparison with their natural counterpart.
With an aim to obtain more insights into the effects of this
modification on the G-quadruplex structures and their
relationship with the thermal stability, in this paper, we report
a structural and physical-chemical analysis of the most inter-
esting TBA derivatives based on NMR, polyacrylamide gel electro-
phoresis (PAGE), CD thermal denaturation experiments and
molecular modelling. Among the TBA derivatives showing suit-
able NMR spectral features and a major conformation, those
characterized by thermal stabilities and/or thrombin affinities
similar to or higher than the natural TBA have been studied.

Table 1 Sequence and residue numbering of the oligodeoxynucleo-
tides investigated. Extra residues have been labelled as Nq (5'-5" inver-
sion) and Ny (3'=3" inversion)

Name Sequence

TBA 5/‘G1 Gy T3TaG5G6T7GgToG10G11T12T13G14G1 5‘3'

TBA-A 5"-G1G,T3T4G5G6T7GsT9G10G11T12T13G14G15-3"-3"-As6
TBA-T 5-G1G,T3T4G5G6T;GsToG10G11T12T13G14G15-3"-3"-T16
T-TBA-A To-5"-5"-G1G,T3T4G5G6T;GgToG10G11T12T13G14G15-3"-3"-As6
A-TBA-T Ay-5"-5"-G1G,T3T4G5G6T7;GgToG10G11T12T13G14G15-3"-3"T16
TBA-G 5"-G1G,T3T4G5G6T7GsToG10G11T12T13G14G15-3"-3"-G16
TBA-C 5-G1G,T3T4G5G6T;GsToG10G11T12T13G14G15-3"-3"-C6
C-TBA-G Co-5"-5"-G1G,T3T4G5GeT;GgToG10G11T12T13G14G15-3-3"-G16
G-TBA-C Go-5-5"-G1G,T3T4G5G6T7GsToG10G11T12T13G14G15-3"-3"-Cy
TBA-Anat  5-G1G,T3T4G5G6T7G5T9G10G11T12T13G14G15A16-3"
TBA-Tnat  5-G1G,T3T4G5G6T7GsT9G10G11T12T13G14G15T16-3"
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In particular, we have focused our attention to TBA-A (Fig. 1)
which, among the derivatives characterized by higher affinities
to the target than the TBA, has shown the highest increase in
the melting temperature (AT, = +11 °C), in an effort to under-
stand the origin of this extra stability in view of extending this
simple modification to other biologically promising G-quadru-
plex aptamers.

Furthermore, the structures of TBA-A and TBA-T have
been compared, in order to highlight the differences in their
behaviors.

Results and discussion

NMR spectroscopy and molecular modelling

The one-dimensional "H NMR spectra (700 MHz, T = 25 °C) of
all the modified thrombin aptamers under the PBS buffer con-
ditions used here (see the Experimental section for details)
show the presence of no less than eight well-defined signals in
the region of 11.5-12.3 ppm, attributable to the imino protons
involved in the Hoogsteen hydrogen bonds of at least two
G-tetrads. Moreover, more than fifteen main signals in the aro-
matic region, due to the presence of the base protons of the
extra residues, in addition to the nine guanine H8 and six
thymine H6 protons, as in the case of the parent TBA, are
evident. Concerning TBA-A, TBA-T, A-TBA-T, TBA-G and TBA-C,
the simple appearance of their 1D spectra indicates that these
modified oligomers form a main single well-defined hydrogen-
bonded conformation (Fig. 2). In some cases, weak resonances
are observable in the aromatic region of few samples, probably
attributable to the unfolded species, considering that their
relative intensities turned out to be sensitive to temperature
changes (data not shown). On the other hand, in the cases of
T-TBA-A, G-TBA-C and C-TBA-G, the imino resonances are
spread over a broader spectral region (10.5-12.8 ppm), which
appear larger and, importantly, their signals are more than the
expected eight for two G-tetrads (Fig. S1 in the ESIY).

Taking into account the good quality of the 'H NMR
spectra of TBA-A, TBA-T, A-TBA-T, TBA-G and TBA-C, together
with the data concerning the thermal stability experiments
and the thrombin affinity test,'® we have focused our attention

This journal is © The Royal Society of Chemistry 2016
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Fig. 2 Aromatic and imino proton regions of the *H NMR spectra
(700 MHz, T = 25 °C) of the TBA analogues and their natural counterpart
in PBS buffer solution (H,O/D,0 9:1) and 0.2 mM EDTA (pH 7.0).

on these five TBA analogues, thus performing further NMR
investigations. A combination of the analysis of the 2D NOESY
(Fig. 3 and S2 in ESIT) and TOCSY spectra (data not shown)
has allowed us to obtain almost complete assignments of the
non-exchangeable protons (Table S1 in the ESIY).

All the five TBA analogues investigated in detail share the
below described NMR features. The intensities of NOESY
crosspeaks between the aromatic base proton and sugar H1'
resonances indicate that four Gs (G, Gs, Gyo and G;,) adopt
syn glycosidic conformations while five Gs (G,, Gg, Gg, G1; and
G;5) adopt anti conformations, where the H8 resonances of the
syn G residues are upfield shifted with respect to those of the
anti G residues."” On the other hand, all of the thymidines
and the extra-residues show anti glycosidic conformations.
The crosspeak patterns show that four anti-Gs (G,, Gg, G1; and
G;5) have classical H8/H2'-H2" sequential connectivities to
5" neighboring syn-Gs (G;, Gs, G1p and Gy, respectively), thus
indicating that the subunits 5-G1G,-3', 5-G5Gg-3, 5-G10G11-3'
and 5-G;,G;5-3' are involved in the formation of a four-
stranded helical structure. In summary, as observed for the
unmodified TBA, there are 5-GsynGanti-3' steps along each
strand connecting the two tetrads.” Moreover, the entire

This journal is © The Royal Society of Chemistry 2016
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pattern of NOEs observed for all the cited Gs indicates that the
backbone conformation of these tracts resembles those of the
canonical TBA, possessing a right-handed helix structure. The
alternation of syn and anti G residues within each strand
suggests that, as in the case of the natural TBA, all the modi-
fied oligomers fold into a monomolecular chair-like foldback
G-quadruplex structure, characterized by two G tetrads.

Since interresidue NOEs are typically weak for 5’-anti-syn-3'
steps,'® there are two strings of 5-GGTT-3' connectivities,
namely 5-G;G,T5T;-3" and 5-G10G11T1,T13-3" (Where syn G resi-
dues are underlined). Further additional connectivities are
present for the segments 5'-G5G¢T;GgTo-3" and 5'-G14G15-3' and
the corresponding stretches, identified on the basis of anti-
anti connectivities. There are no sequential connectivities
between the 3'-side thymidines in each loop (T4, To, and Ty3)
and the following syn-G.

These two- to four-residue stretches of sequential connectivi-
ties were arranged taking into account the primary sequence
and the information in long-range NOE connectivities.

As in the case of the parent TBA, for all the modified TBAs
studied, there are a number of NOE connectivities observed
between the residues not adjacent in the sequence. In parti-
cular, NOEs are present between H8 of G, and methyl, H2' and
H2" of T, and between H8 of G;; and methyl, H2" and H2" of
T;3. Complementary information is provided by the NOEs
from the methyl of T, with H1’, H2' and H2" of G, and from
the methyl of T;; with H1’, H2" and H2" of G,;. This collection
of NOEs places T, and T3 residues close to the G,—G5-G11-G14
tetrad. There are NOE connectivities also between H8 of Gg
and H1', H2' and H2" of G4 and between H1' of T and HS8 of
Gys, thus indicating that Gg and Ty residues in the TGT loop
are near to the G;—-G—G1(-G;5 tetrad. This collection of NOEs
showed that, as strongly suggested by the CD data,'® all the
modified TBAs investigated by NMR adopt G-quadruplex struc-
tures strictly resembling that of their natural counterpart.

Remarkably, modified TBAs are characterized by additional
NOEs between the extra-residues at the inversion of polarity
sites and the deoxyguanosines of the upper tetrad. In particu-
lar, NOE connectivities have been observed between H1'/G;5
and H2' and H2"/A6, H2"/G;o and H8/A,¢, for TBA-A (Fig. 3);
H2"/G;5 and H8/G;¢ for TBA-G; H8/G; and CHj/Ty6, H8/Gy5
and H1'/T;¢ for TBA-T; H6/C,¢ and H1'/G;5 for TBA-C; H8/G,
and CH;/Ty6, H8/G; and H2' and H2"/A,, H6/T;¢ and H2' and
H2"/A, in the case of A-TBA-T (Fig. S2 in the ESIY). This collec-
tion of NOE contacts suggests that the extra-residues in the
above cited samples are not randomly oriented, but are posi-
tioned on the top of the G4 core. In order to corroborate the
validity of these considerations the molecular models of TBA-A
and TBA-T were built (Fig. 4 and 5), these TBA analogues
being among the most stable in the series. As expected, the
insertion of an extra adenosine or thymidine residue with a
3'-3" inversion of the polarity site does not significantly affect
the general folding of the modified G-quadruplex structures,
compared to the original TBA, as already suggested by the
NMR data. It is however noteworthy that, in the case of TBA-A,
a close examination of the regions comprising the upper tetrad
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Fig. 3 Expanded region of the 2D NOESY spectrum of TBA-A (700 MHz; 25 °C; strand concentration of 2 mM in PBS buffer solution (H,O/D,0 9:1)
and 0.2 mM EDTA (pH 7.0); total volume 0.6 ml; mixing time 180 ms) correlating bases H8/H6 and anomeric with sugar protons. The NOEs involving

the extra-residue are highlighted.

TBA-A

TBA

TBA-T

Fig. 4 Stick models of TBA-A, the original TBA and TBA-T. The atoms are shown with different colors (carbons, green; nitrogens, blue; oxygens,

red; hydrogens, white; phosphorus, purple).

with the extra 3'-3' adenosine (A;6) and the TGT loop reveals a
peculiar kind of intercalation in which A;s is sandwiched
between the residues Ty and Gjs, thus allowing a very efficient
stacking interaction among them (Fig. 5). This particular
arrangement makes possible the occurrence of H-bonds
between the N1 of A and the (NH,)2 of Gg and, moreover,
between the 5-OH of A;s and the O4 of To. Furthermore,
another significant difference between TBA-A and TBA regard-
ing the T, residue position is that, in the modified aptamer it

7710 | Org. Biomol. Chem., 2016, 14, 77077714

is placed in close proximity of its upper G-tetrad, while in the
parent TBA lies away from the core of the G-quadruplex struc-
ture, thus resulting in being exposed to the solvent (Fig. 4). As
far as the model of TBA-T is concerned, the extra residue Tyg
shows a similar behavior to A;s in TBA-A, being intercalated
between the residues Ty and G,s5. However, in this case, no
H-bonds involving the extra residue have been observed and
residue Ty is less efficiently stacked on the extra residue
Ty6. These differences could account for the higher melting

This journal is © The Royal Society of Chemistry 2016
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Fig. 5 Lateral view of the TBA-A stick model highlighting the stacking
interactions among residues Gys, Ajg and Tg. The atoms of the labelled
residues are shown with different colors (carbons, green; nitrogens,
blue; oxygens, red; hydrogens, white; phosphorus, purple). Black dotted
lines indicate hydrogen bonds involving the extra residue A;e.

temperature observed for TBA-A. Moreover, differently from
TBA-A, the residue of T, in TBA-T arranges outward, similarly
to the parent TBA.

CD thermal denaturation measurements

The thermal stability of the TBA analogues was determined by
CD melting experiments. The thermodynamic parameters and
the melting temperatures obtained by the van’t Hoff analysis
of the CD melting curves'® in PBS are shown in Table 2.
Inspection of Table 2 reveals that all the TBA analogues have
higher melting temperatures compared with the TBA, with
the exception of A-TBA-T showing a Ty, similar to the TBA.
A detailed thermodynamic analysis shows that the addition of
an extra nucleotide with inversion of polarity leads to higher
AH, . and AS,y, thus suggesting that TBA-A, TBA-G, TBA-C
and TBA-T form a more structured folded state stabilised by
the presence of additional interactions in comparison with the
unmodified TBA. This conclusion is fully consistent with the
NMR and modelling results obtained for TBA-A.

Furthermore, we found higher AH, ;. values for TBA-G and
TBA-A (AAH, . ~ +48 kJ mol™") with respect to TBA-T and

Table 2 Thermodynamic parameters of some modified aptamers and
their natural counterpart (TBA) in PBS buffer obtained from the van't
Hoff analysis of the CD melting curves (see the text for details)

Tm (OC) AHV.H.a ASV.I—[.‘Z
Names (x1) ATy, (k] mol™) (k] mol™" K1)
TBA 33 — 124 0.40
TBA-A 44 +11 170 0.54
TBA-T 39 +6 150 0.48
A-TBA-T 33 0 140 0.46
T-TBA-A 36 +3 145 0.47
TBA-G 39 +6 175 0.56
TBA-C 38 +5 148 0.48
TBA-A nat 33 0 130 0.42
TBA-T nat 33 0 130 0.42

“The errors on AH, ;; and AS, ;. are within the 10%.
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TBA-C (AAH, ;. ~ +25 kJ mol™"). This observation reveals that
purines are able to establish stronger interactions with respect
to the pyrimidines. Interestingly, the comparison of the AH,.y.
values obtained for TBA-A and TBA-T with the ones for
T-TBA-A and A-TBA-T, respectively, reveals that the addition of
an extra 5'-5' nucleotide decreases the enthalpy contribution
to the quadruplex stability. On the other hand, the addition of
an extra nucleotide through a natural 3'-5’ phosphodiester
bond (TBA-A nat and TBA-T nat), does not change the thermo-
dynamic parameters of the TBA (within the experimental
error), thus confirming that the presence of the 3'-3' polarity
inversion site is a crucial structural feature in determining the
higher thermodynamic stability of the TBA analogues. It
should be noted that other authors have reported the synthesis
and investigations of TBA derivatives carrying an acridine
moiety, a quindoline moiety or both at the 3-end." Also in
these cases, increases of the melting temperatures were
observed. However, no NMR and molecular modelling data
were reported suggesting a type of intercalation similar to that
we observed for TBA-A and TBA-T.

Since stability and folding of G-quadruplex structures
strongly depend on the nature of cations in solution, we have
also recorded CD spectra and CD melting and annealing
curves in potassium buffer of the modified aptamers TBA-A,
TBA-T, TBA-C and TBA-G that are among the TBA derivatives
characterized by a major structure, which have shown thermal
stabilities in PBS higher than the natural TBA (Fig. S3, S4 and
Table S2 in ESIt). The CD profiles of the four TBA analogues
are quite similar to the natural TBA, thus suggesting that they
adopt antiparallel “chair-like” G-quadruplex structures also
under these conditions. Concerning the melting experiments,
the four ODNs considered confirm their higher stabilities com-
pared with the TBA, although the differences have been proven
to be lesser. As for PBS buffer, TBA-A has resulted to be the
most stable, while TBA-T has shown a higher T, than TBA-C
and TBA-G. Furthermore, the melting and annealing profiles
have resulted to be almost superimposable, thus indicating
the occurrence of a monomolecular G-quadruplex structure, as
in the case of the natural TBA.

Gel electrophoresis

With an aim to confirm that all the TBA analogues containing
the sites of inversion of polarity can adopt the monomolecular
G-quadruplex structure characteristic of the natural TBA, a
non-denaturing PAGE analysis was performed (Fig. S5 in the
ESIT). Except for G-TBA-C, the electrophoretic profile shows
that all TBA analogues form main structures with motilities
very similar to that of the natural TBA. Taking into account
that the electrophoretic motility of G-quadruplex structures is
mostly affected by their conformation and that the charge/
residue ratio is very similar for all oligonucleotides, the PAGE
results strongly suggest the occurring of G-quadruplex confor-
mations comparable to that of the original TBA. However, in
the cases of some TBA analogues containing two sites of inver-
sion of polarity (namely, A-TBA-T, T-TBA-A and C-TBA-G) a
migration slightly slower than the TBA analogues with one

Org. Biomol. Chem., 2016, 14, 7707-7714 | 7711
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inversion site was observed, probably due to the hindrance of
the two extra residues to move through the gel. In the case of
G-TBA-C, the presence of more than one band would suggest
the presence of more conformations.

Conclusions

Among the aptamers adopting a G-quadruplex structure, the
TBA is probably the most studied and it is still the subject of
several investigations. Most of the post-SELEX modifications
proposed for this aptamer, with an aim to improve its biologi-
cal and physical-chemical properties, have concerned the
replacement of natural residues with modified ones. Depend-
ing on the type of the modified residue used and its position
in the sequence, unpredictable results have been obtained,
particularly if the modification involves TT loop residues. In a
recent communication, we showed that noteworthily improved
TBA properties could be obtained simply by linking a natural
extra-residue at the 3’-end or at both the ends of the sequence
through 3'-3’ or 5'-5' phosphodiester bonds, and then to
protect the conformation of the TT loops from being affected,
which is mostly responsible for the interaction with the target.
The NMR analysis on TBA-A, TBA-G, TBA-T, TBA-C and
A-TBA-T shows that these modified aptamers adopt chair-like
G-quadruplex conformations very similar to that of their
natural counterpart. Furthermore, NOE contacts involving the
extra-residues and one or more guanosines of the upper
G-tetrad suggest that extra-residues are not randomly oriented,
but stacked on the top of the G-quadruplex structure. The ana-
lysis of the thermodynamic parameters shows that all the TBA
analogues containing only a 3'-3" extra-residue are character-
ized by melting temperatures higher than the TBA (AT,
ranging from +5 to +11). Most importantly, the comparison of
the thermodynamic data concerning TBA-A nat and TBA-T nat,
on one hand, and TBA-A and TBA-T, on the other hand, clearly
shows that the presence of only a 3’ extra-residue in the
sequence does not result in higher melting temperatures and,
then, the occurrence of the 3'-3’ phosphodiester bond is fun-
damental for improving the thermal stabilities of the modified
aptamers. Taking into account the couples TBA-A and
T-TBA-A, TBA-T and A-TBA-T, and TBA-G and C-TBA-G,'® the
thermodynamic data suggest also that the presence of the 5'-5
bonded extra-residue counters the stabilizing effect of the 3'-3’
bonded extra-residue in three cases out four. The remarkable
increase obtained in thermal stability, and in the general pro-
perties of the TBA, by adding a 3'-3’ extra-residue suggests that
this modification could be successfully applied also in improv-
ing the properties of other G-quadruplex forming aptamers.

Experimental section
Oligonucleotide synthesis and purification

ODNs containing inversion of polarity sites were synthesized
and purified as reported before.'® ODNs TBA-A nat and TBA-T

7712 | Org. Biomol Chem., 2016, 14, 7707-7714
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nat were synthesized using a Millipore Cyclone Plus DNA
synthesizer using solid phase p-cyanoethyl phosphoramidite
chemistry at the 15 pmol scale. The oligomers were detached
from the support and deprotected by treatment with concen-
trated aqueous ammonia at 80 °C overnight. The combined
filtrates and washings were concentrated under reduced
pressure, redissolved in H,O, analyzed and purified by high-per-
formance liquid chromatography on a Nucleogel SAX column
(Macherey-Nagel, 1000-8/46), using buffer A: 20 mM NaH,PO,/
Na,HPO, aqueous solution (pH 7.0) containing 20% (v/v) CH;CN
and buffer B: 1 M NaCl, 20 mM NaH,PO,/Na,HPO, aqueous
solution (pH 7.0) containing 20% (v/v) CH;CN; a linear gradient
from 0 to 100% B for 45 min and flow rate 1 ml min~" were
used. The fractions of the oligomers were collected and succes-
sively desalted by Sep-pak cartridges (C-18). The isolated oligo-
mers proved to be >98% pure by HPLC (Fig. S6 in the ESIY).

NMR spectroscopy and molecular modelling

NMR samples were prepared at a concentration of about
2 mM, in 0.6 ml (H,0/D,0 9:1 v/v) of a PBS buffer solution
(pH 7.0) and 0.2 mM EDTA. All the samples were heated for
5-10 min at 80 °C and slowly cooled (10-12 h) to room temp-
erature. The solutions were equilibrated for 24 hours at 4 °C.
The annealing process was assumed to be complete when the
"H NMR spectra were super-imposable on changing time. The
NMR spectra were recorded with a Varian Unity INOVA
700 MHz spectrometer. The 1D proton spectra of the sample in
H,O were recorded using pulsed-field gradient DPFGSE for H,O
suppression.”® 'H chemical shifts were referenced relative to exter-
nal sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS). The
pulsed-field gradient DPFGSE sequence was used for NOESY>'
(250 ms and 180 ms mixing times) and TOCSY**(120 ms mixing
time) experiments in H,O. All experiments were conducted using
the STATES-TPPI procedure for quadrature detection.*® In all 2D
experiments, the time domain data consisted of 2048 complex
points in t2 and 400-512 fids in t1 dimension. A relaxation delay
of 1.2 s was used for all experiments.

The main conformational features of the quadruplex
adopted by TBA-A and TBA-T were explored by means of a
molecular modelling study. The CVFF force field using a CVFF
atom types set was used.> The initial coordinates for the start-
ing model of TBA-A and TBA-T were taken from the NMR solu-
tion structure of the G-quadruplex d(GGTTGGTGTGGTTGG)
(Protein Data Bank entry number 148D), with the first
and the best representative conformer of the twelve
available ones submitted by Feigon et al®> The initial
5'G1G,T3T4G5GeT7GgToG10G11T15T13G14G153-3'As (TBA-A) and
5'G1G,T3T4G5GeT;GgToG10G11T12T13G14G153'-3'T1  (TBA-T)
G-quadruplex models were built by adding an extra adenosine
or thymidine residue, respectively, at the 3-end of the TBA
sequence, linked through a 3’-3' phosphodiester bond, using
the Biopolymer building tool of Discover. The calculations
were performed using a distance-dependent macroscopic
dielectric constant of 4r and an infinite cut-off for non-bonded
interactions to partially compensate for the lack of the
solvent used.*® Using steepest descent and conjugate
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gradient methods, the conformational energy of the complexes
was minimized until convergence to an RMS gradient of
0.1 keal mol™ A™" was reached. The illustrations of the struc-
ture were generated using the INSIGHT II program, version
2005 (Accelrys, San Diego, CA, USA). All the calculations were
performed on a PC running Linux ES 2.6.9.

CD thermal denaturation measurements

The CD samples of modified oligonucleotides and their
natural counterpart were prepared at an ODN concentration of
100 pM using a PBS buffer or a potassium buffer (10 mM
KH,PO,/K,HPO,, 70 mM KCIl, pH 7.0) and subjected to the
annealing procedure (heating at 90 °C and slowly cooling to
room temperature). CD melting curves were registered as a
function of temperature from 20 °C to 90 °C for all quadru-
plexes at their maximum Cotton effect wavelengths. The CD
data were recorded using a 0.1 cm pathlength cuvette with
a scan rate of 0.5 °C min~'. The CD melting curves were
modelled by a two-state transition according to the van’t Hoff
analysis.>” The melting temperature (Ty,), the enthalpy change
(AH,y) and the entropy change (AS,y) values (Table 2)
provide the best fit of the experimental melting data.

Gel electrophoresis

All oligonucleotides were analyzed by non-denaturing PAGE.
Samples in the NMR buffer were loaded on a 20% polyacryl-
amide gel containing Tris-Borate-EDTA (TBE) 2.5x and NaCl
50 mM. The run buffer was TBE 1x containing 100 mM NacCl.
For all samples, a solution of glycerol/TBE 1x with 100 mM
NaCl 2:1 was added just before loading. Electrophoresis was
performed at 8 V. cm™" at a temperature close to 10 °C. The
bands were visualized by UV shadowing.
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