220 research outputs found

    Strategies for the evolution of sex

    Get PDF
    We find that the hypothesis made by Jan, Stauffer and Moseley [Theory in Biosc., 119, 166 (2000)] for the evolution of sex, namely a strategy devised to escape extinction due to too many deleterious mutations, is sufficient but not necessary for the successful evolution of a steady state population of sexual individuals within a finite population. Simply allowing for a finite probability for conversion to sex in each generation also gives rise to a stable sexual population, in the presence of an upper limit on the number of deleterious mutations per individual. For large values of this probability, we find a phase transition to an intermittent, multi-stable regime. On the other hand, in the limit of extremely slow drive, another transition takes place to a different steady state distribution, with fewer deleterious mutations within the asexual population.Comment: RevTeX, 11 pages, multicolumn, including 12 figure

    MicroRNAs Are Involved in the Development of Morphine-Induced Analgesic Tolerance and Regulate Functionally Relevant Changes in Serpini1.

    Get PDF
    Long-term opioid treatment results in reduced therapeutic efficacy and in turn leads to an increase in the dose required to produce equivalent pain relief and alleviate break-through or insurmountable pain. Altered gene expression is a likely means for inducing long-term neuroadaptations responsible for tolerance. Studies conducted by our laboratory (Tapocik et al., 2009) revealed a network of gene expression changes occurring in canonical pathways involved in neuroplasticity, and uncovered miRNA processing as a potential mechanism. In particular, the mRNA coding the protein responsible for processing miRNAs, Dicer1, was positively correlated with the development of analgesic tolerance. The purpose of the present study was to test the hypothesis that miRNAs play a significant role in the development of analgesic tolerance as measured by thermal nociception. Dicer1 knockdown, miRNA profiling, bioinformatics, and confirmation of high value targets were used to test the proposition. Regionally targeted Dicer1 knockdown (via shRNA) had the anticipated consequence of eliminating the development of tolerance in C57BL/6J (B6) mice, thus supporting the involvement of miRNAs in the development of tolerance. MiRNA expression profiling identified a core set of chronic morphine-regulated miRNAs (miR\u27s 27a, 9, 483, 505, 146b, 202). Bioinformatics approaches were implemented to identify and prioritize their predicted target mRNAs. We focused our attention on miR27a and its predicted target serpin peptidase inhibitor clade I (Serpini1) mRNA, a transcript known to be intricately involved in dendritic spine density regulation in a manner consistent with chronic morphine\u27s consequences and previously found to be correlated with the development of analgesic tolerance. In vitro reporter assay confirmed the targeting of the Serpini1 3′-untranslated region by miR27a. Interestingly miR27a was found to positively regulateSerpini1 mRNA and protein levels in multiple neuronal cell lines. Lastly, Serpini1 knockout mice developed analgesic tolerance at a slower rate than wild-type mice thus confirming a role for the protein in analgesic tolerance. Overall, these results provide evidence to support a specific role for miR27a and Serpini1 in the behavioral response to chronic opioid administration (COA) and suggest that miRNA expression and mRNA targeting may underlie the neuroadaptations that mediate tolerance to the analgesic effects of morphine

    Building Babies - Chapter 16

    Get PDF
    In contrast to birds, male mammals rarely help to raise the offspring. Of all mammals, only among rodents, carnivores, and primates, males are sometimes intensively engaged in providing infant care (Kleiman and Malcolm 1981). Male caretaking of infants has long been recognized in nonhuman primates (Itani 1959). Given that infant care behavior can have a positive effect on the infant’s development, growth, well-being, or survival, why are male mammals not more frequently involved in “building babies”? We begin the chapter defining a few relevant terms and introducing the theory and hypotheses that have historically addressed the evolution of paternal care. We then review empirical findings on male care among primate taxa, before focusing, in the final section, on our own work on paternal care in South American owl monkeys (Aotus spp.). We conclude the chapter with some suggestions for future studies.Deutsche Forschungsgemeinschaft (HU 1746/2-1) Wenner-Gren Foundation, the L.S.B. Leakey Foundation, the National Geographic Society, the National Science Foundation (BCS-0621020), the University of Pennsylvania Research Foundation, the Zoological Society of San Dieg

    High CO2 enhances the competitive strength of seaweeds over corals

    Get PDF
    Space competition between corals and seaweeds is an important ecological process underlying coral-reef dynamics. Processes promoting seaweed growth and survival, such as herbivore overfishing and eutrophication, can lead to local reef degradation. Here, we present the case that increasing concentrations of atmospheric CO2 may be an additional process driving a shift from corals to seaweeds on reefs. Coral (Acropora intermedia) mortality in contact with a common coral-reef seaweed (Lobophora papenfussii) increased two- to threefold between background CO2 (400 ppm) and highest level projected for late 21st century (1140 ppm). The strong interaction between CO2 and seaweeds on coral mortality was most likely attributable to a chemical competitive mechanism, as control corals with algal mimics showed no mortality. Our results suggest that coral (Acropora) reefs may become increasingly susceptible to seaweed proliferation under ocean acidification, and processes regulating algal abundance (e.g. herbivory) will play an increasingly important role in maintaining coral abundance

    Assessment of examiner leniency and stringency ('hawk-dove effect') in the MRCP(UK) clinical examination (PACES) using multi-facet Rasch modelling

    Get PDF
    BACKGROUND: A potential problem of clinical examinations is known as the hawk-dove problem, some examiners being more stringent and requiring a higher performance than other examiners who are more lenient. Although the problem has been known qualitatively for at least a century, we know of no previous statistical estimation of the size of the effect in a large-scale, high-stakes examination. Here we use FACETS to carry out a multi-facet Rasch modelling of the paired judgements made by examiners in the clinical examination (PACES) of MRCP(UK), where identical candidates were assessed in identical situations, allowing calculation of examiner stringency. METHODS: Data were analysed from the first nine diets of PACES, which were taken between June 2001 and March 2004 by 10,145 candidates. Each candidate was assessed by two examiners on each of seven separate tasks. with the candidates assessed by a total of 1,259 examiners, resulting in a total of 142,030 marks. Examiner demographics were described in terms of age, sex, ethnicity, and total number of candidates examined. RESULTS: FACETS suggested that about 87% of main effect variance was due to candidate differences, 1% due to station differences, and 12% due to differences between examiners in leniency-stringency. Multiple regression suggested that greater examiner stringency was associated with greater examiner experience and being from an ethnic minority. Male and female examiners showed no overall difference in stringency. Examination scores were adjusted for examiner stringency and it was shown that for the present pass mark, the outcome for 95.9% of candidates would be unchanged using adjusted marks, whereas 2.6% of candidates would have passed, even though they had failed on the basis of raw marks, and 1.5% of candidates would have failed, despite passing on the basis of raw marks. CONCLUSION: Examiners do differ in their leniency or stringency, and the effect can be estimated using Rasch modelling. The reasons for differences are not clear, but there are some demographic correlates, and the effects appear to be reliable across time. Account can be taken of differences, either by adjusting marks or, perhaps more effectively and more justifiably, by pairing high and low stringency examiners, so that raw marks can be used in the determination of pass and fail

    Porphyrin Homeostasis Maintained by ABCG2 Regulates Self-Renewal of Embryonic Stem Cells

    Get PDF
    Under appropriate culture conditions, undifferentiated embryonic stem (ES) cells can undergo multiple self-renewal cycles without loss of pluripotency suggesting they must be equipped with specific defense mechanisms to ensure sufficient genetic stability during self-renewal expansion. The ATP binding cassette transporter ABCG2 is expressed in a wide variety of somatic and embryonic stem cells. However, whether it plays an important role in stem cell maintenance remains to be defined.Here we provide evidence to show that an increase in the level of ABCG2 was observed accompanied by ES colony expansion and then were followed by decreases in the level of protoporphyrin IX (PPIX) indicating that ABCG2 plays a role in maintaining porphyrin homoeostasis. RNA-interference mediated inhibition of ABCG2 as well as functional blockage of ABCG2 transporter with fumitremorgin C (FTC), a specific and potent inhibitor of ABCG2, not only elevated the cellular level of PPIX, but also arrest the cell cycle and reduced expression of the pluripotent gene Nanog. Overexpression of ABCG2 in ES cells was able to counteract the increase of endogenous PPIX induced by treatment with 5-Aminolevulinic acid suggesting ABCG2 played a direct role in removal of PPIX from ES cells. We also found that excess PPIX in ES cells led to elevated levels of reactive oxygen species which in turn triggered DNA damage signals as indicated by increased levels of gammaH2AX and phosphorylated p53. The increased level of p53 reduced Nanog expression because RNA- interference mediated inhibition of p53 was able to prevent the downregulation of Nanog induced by FTC treatment.The present work demonstrated that ABCG2 protects ES cells from PPIX accumulation during colony expansion, and that p53 and gammaH2AX acts as a downstream checkpoint of ABCG2-dependent defense machinery in order to maintain the self-renewal of ES cells

    Prebiotic synthesis of phosphoenol pyruvate by α-phosphorylation-controlled triose glycolysis

    Get PDF
    Phosphoenol pyruvate is the highest-energy phosphate found in living organisms and is one of the most versatile molecules in metabolism. Consequently, it is an essential intermediate in a wide variety of biochemical pathways, including carbon fixation, the shikimate pathway, substrate-level phosphorylation, gluconeogenesis and glycolysis. Triose glycolysis (generation of ATP from glyceraldehyde 3-phosphate via phosphoenol pyruvate) is among the most central and highly conserved pathways in metabolism. Here, we demonstrate the efficient and robust synthesis of phosphoenol pyruvate from prebiotic nucleotide precursors, glycolaldehyde and glyceraldehyde. Furthermore, phosphoenol pyruvate is derived within an α-phosphorylation controlled reaction network that gives access to glyceric acid 2-phosphate, glyceric acid 3-phosphate, phosphoserine and pyruvate. Our results demonstrate that the key components of a core metabolic pathway central to energy transduction and amino acid, sugar, nucleotide and lipid biosyntheses can be reconstituted in high yield under mild, prebiotically plausible conditions
    corecore