762 research outputs found
The male handicap: male-biased mortality explains skewed sex ratios in brown trout embryos
Juvenile sex ratios are often assumed to be equal for many species with genetic sex determination, but this has rarely been tested in fish embryos due to their small size and absence of sex-specific markers. We artificially crossed three populations of brown trout and used a recently developed genetic marker for sexing the offspring of both pure and hybrid crosses. Sex ratios (SR = proportion of males) varied widely one month after hatching ranging from 0.15 to 0.90 (mean = 0.39 ± 0.03). Families with high survival tended to produce balanced or male-biased sex ratios, but SR was significantly female-biased when survival was low, suggesting that males sustain higher mortality during development. No difference in SR was found between pure and hybrid families, but the existence of sire × dam interactions suggests that genetic incompatibility may play a role in determining sex ratios. Our findings have implications for animal breeding and conservation because skewed sex ratios will tend to reduce effective population size and bias selection estimates
Recommended from our members
Biology and evolutionary games
This chapter surveys some evolutionary games used in biological sciences. These include the Hawk-Dove game, the Prisoner’s Dilemma, Rock–Paper–Scissors, the war of attrition, the Habitat Selection game, predatorprey games, and signalling games
The origin of life: chemical evolution of a metabolic system in a mineral honeycomb?
For the RNA-world hypothesis to be ecologically feasible, selection mechanisms acting on replicator communities need to be invoked and the corresponding scenarios of molecular evolution specified. Complementing our previous models of chemical evolution on mineral surfaces, in which selection was the consequence of the limited mobility of macromolecules attached to the surface, here we offer an alternative realization of prebiotic group-level selection: the physical encapsulation of local replicator communities into the pores of the mineral substrate. Based on cellular automaton simulations we argue that the effect of group selection in a mineral honeycomb could have been efficient enough to keep prebiotic ribozymes of different specificities and replication rates coexistent, and their metabolic cooperation protected from extensive molecular parasitism. We suggest that mutants of the mild parasites persistent in the metabolic system can acquire useful functions such as replicase activity or the production of membrane components, thus opening the way for the evolution of the first autonomous protocells on Earth
Evidence for directional selection at a novel major histocompatibility class I marker in wild common frogs (Rana temporaria) exposed to a viral pathogen (Ranavirus).
(c) 2009 Teacher et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Whilst the Major Histocompatibility Complex (MHC) is well characterized in the anuran Xenopus, this region has not previously been studied in another popular model species, the common frog (Rana temporaria). Nor, to date, have there been any studies of MHC in wild amphibian host-pathogen systems. We characterise an MHC class I locus in the common frog, and present primers to amplify both the whole region, and specifically the antigen binding region. As no more than two expressed haplotypes were found in over 400 clones from 66 individuals, it is likely that there is a single class I locus in this species. This finding is consistent with the single class I locus in Xenopus, but contrasts with the multiple loci identified in axolotls, providing evidence that the diversification of MHC class I into multiple loci likely occurred after the Caudata/Anura divergence (approximately 350 million years ago) but before the Ranidae/Pipidae divergence (approximately 230 mya). We use this locus to compare wild populations of common frogs that have been infected with a viral pathogen (Ranavirus) with those that have no history of infection. We demonstrate that certain MHC supertypes are associated with infection status (even after accounting for shared ancestry), and that the diseased populations have more similar supertype frequencies (lower F(ST)) than the uninfected. These patterns were not seen in a suite of putatively neutral microsatellite loci. We interpret this pattern at the MHC locus to indicate that the disease has imposed selection for particular haplotypes, and hence that common frogs may be adapting to the presence of Ranavirus, which currently kills tens of thousands of amphibians in the UK each year
Evolutionary connectionism: algorithmic principles underlying the evolution of biological organisation in evo-devo, evo-eco and evolutionary transitions
The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term “evolutionary connectionism” to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions
Recommended from our members
The effect of fight cost structure on fighting behaviour involving simultaneous decisions and variable investment levels
In the “producer–scrounger” model, a producer discovers a resource and is in turn discovered by a second individual, the scrounger, who attempts to steal it. This resource can be food or a territory, and in some situations, potentially divisible. In a previous paper we considered a producer and scrounger competing for an indivisible resource, where each individual could choose the level of energy that they would invest in the contest. The higher the investment, the higher the probability of success, but also the higher the costs incurred in the contest. In that paper decisions were sequential with the scrounger choosing their strategy before the producer. In this paper we consider a version of the game where decisions are made simultaneously. For the same cost functions as before, we analyse this case in detail, and then make comparisons between the two cases. Finally we discuss some real examples with potentially variable and asymmetric energetic investments, including intraspecific contests amongst spiders and amongst parasitoid wasps. In the case of the spiders, detailed estimates of energetic expenditure are available which demonstrate the asymmetric values assumed in our models. For the wasps the value of the resource can affect the probabilities of success of the defender and attacker, and differential energetic investment can be inferred. In general for real populations energy usage varies markedly depending upon crucial parameters extrinsic to the individual such as resource value and intrinsic ones such as age, and is thus an important factor to consider when modelling
Estimation of Isolation Times of the Island Species in the Drosophila simulans Complex from Multilocus DNA Sequence Data
Background: The Drosophila simulans species complex continues to serve as an important model system for the study of new species formation. The complex is comprised of the cosmopolitan species, D. simulans, and two island endemics, D. mauritiana and D. sechellia. A substantial amount of effort has gone into reconstructing the natural history of the complex, in part to infer the context in which functional divergence among the species has arisen. In this regard, a key parameter to be estimated is the initial isolation time (t) of each island species. Loci in regions of low recombination have lower divergence within the complex than do other loci, yet divergence from D. melanogaster is similar for both classes. This might reflect gene flow of the lowrecombination loci subsequent to initial isolation, but it might also reflect differential effects of changing population size on the two recombination classes of loci when the low-recombination loci are subject to genetic hitchhiking or pseudohitchhiking Methodology/Principal Findings: New DNA sequence variation data for 17 loci corroborate the prior observation from 13 loci that DNA sequence divergence is reduced in genes of low recombination. Two models are presented to estimate t and other relevant parameters (substitution rate correction factors in lineages leading to the island species and, in the case of the 4-parameter model, the ratio of ancestral to extant effective population size) from the multilocus DNA sequence data. Conclusions/Significance: In general, it appears that both island species were isolated at about the same time, here estimated at,250,000 years ago. It also appears that the difference in divergence patterns of genes in regions of low an
Self Assessment in Insects: Honeybee Queens Know Their Own Strength
Contests mediate access to reproductive opportunities in almost all species of animals. An important aspect of the evolution of contests is the reduction of the costs incurred during intra-specific encounters to a minimum. However, escalated fights are commonly lethal in some species like the honeybee, Apis mellifera. By experimentally reducing honeybee queens' fighting abilities, we demonstrate that they refrain from engaging in lethal contests that typically characterize their reproductive dominance behavior and coexist peacefully within a colony. This suggests that weak queens exploit an alternative reproductive strategy and provides an explanation for rare occurrences of queen cohabitation in nature. Our results further indicate that self-assessment, but not mutual assessment of fighting ability occurs prior to and during the agonistic encounters
If players are sparse social dilemmas are too: Importance of percolation for evolution of cooperation
Spatial reciprocity is a well known tour de force of cooperation promotion. A
thorough understanding of the effects of different population densities is
therefore crucial. Here we study the evolution of cooperation in social
dilemmas on different interaction graphs with a certain fraction of vacant
nodes. We find that sparsity may favor the resolution of social dilemmas,
especially if the population density is close to the percolation threshold of
the underlying graph. Regardless of the type of the governing social dilemma as
well as particularities of the interaction graph, we show that under pairwise
imitation the percolation threshold is a universal indicator of how dense the
occupancy ought to be for cooperation to be optimally promoted. We also
demonstrate that myopic updating, due to the lack of efficient spread of
information via imitation, renders the reported mechanism dysfunctional, which
in turn further strengthens its foundations.Comment: 6 two-column pages, 5 figures; accepted for publication in Scientific
Reports [related work available at http://arxiv.org/abs/1205.0541
Incipient Cognition Solves the Spatial Reciprocity Conundrum of Cooperation
Background: From the simplest living organisms to human societies, cooperation among individuals emerges as a paradox difficult to explain and describe mathematically, although very often observed in reality. Evolutionary game theory offers an excellent toolbar to investigate this issue. Spatial structure has been one of the first mechanisms promoting cooperation; however, alone it only opens a narrow window of viability. Methodology/Principal Findings: Here we equip individuals with incipient cognitive abilities, and investigate the evolution of cooperation in a spatial world where retaliation, forgiveness, treason and mutualism may coexist, as individuals engage in Prisoner’s Dilemma games. In the model, individuals are able to distinguish their partners and act towards them based on previous interactions. We show how the simplest level of cognition, alone, can lead to the emergence of cooperation. Conclusions/Significance: Despite the incipient nature of the individuals ’ cognitive abilities, cooperation emerges for unprecedented values of the temptation to cheat, being also robust to invasion by cheaters, errors in decision making an
- …