4,555 research outputs found

    Robust ecological pattern formation induced by demographic noise

    Full text link
    We demonstrate that demographic noise can induce persistent spatial pattern formation and temporal oscillations in the Levin-Segel predator-prey model for plankton-herbivore population dynamics. Although the model exhibits a Turing instability in mean field theory, demographic noise greatly enlarges the region of parameter space where pattern formation occurs. To distinguish between patterns generated by fluctuations and those present at the mean field level in real ecosystems, we calculate the power spectrum in the noise-driven case and predict the presence of fat tails not present in the mean field case. These results may account for the prevalence of large-scale ecological patterns, beyond that expected from traditional non-stochastic approaches.Comment: Revised version. Supporting simulation at: http://guava.physics.uiuc.edu/~tom/Netlogo

    Prisoner's Dilemma cellular automata revisited: evolution of cooperation under environmental pressure

    Full text link
    We propose an extension of the evolutionary Prisoner's Dilemma cellular automata, introduced by Nowak and May \cite{nm92}, in which the pressure of the environment is taken into account. This is implemented by requiring that individuals need to collect a minimum score UminU_{min}, representing indispensable resources (nutrients, energy, money, etc.) to prosper in this environment. So the agents, instead of evolving just by adopting the behaviour of the most successful neighbour (who got UmsnU^{msn}), also take into account if UmsnU^{msn} is above or below the threshold UminU_{min}. If Umsn<UminU^{msn}<U_{min} an individual has a probability of adopting the opposite behaviour from the one used by its most successful neighbour. This modification allows the evolution of cooperation for payoffs for which defection was the rule (as it happens, for example, when the sucker's payoff is much worse than the punishment for mutual defection). We also analyse a more sophisticated version of this model in which the selective rule is supplemented with a "win-stay, lose-shift" criterion. The cluster structure is analyzed and, for this more complex version we found power-law scaling for a restricted region in the parameter space.Comment: 15 pages, 8 figures; added figures and revised tex

    A Very Low Resource Language Speech Corpus for Computational Language Documentation Experiments

    Full text link
    Most speech and language technologies are trained with massive amounts of speech and text information. However, most of the world languages do not have such resources or stable orthography. Systems constructed under these almost zero resource conditions are not only promising for speech technology but also for computational language documentation. The goal of computational language documentation is to help field linguists to (semi-)automatically analyze and annotate audio recordings of endangered and unwritten languages. Example tasks are automatic phoneme discovery or lexicon discovery from the speech signal. This paper presents a speech corpus collected during a realistic language documentation process. It is made up of 5k speech utterances in Mboshi (Bantu C25) aligned to French text translations. Speech transcriptions are also made available: they correspond to a non-standard graphemic form close to the language phonology. We present how the data was collected, cleaned and processed and we illustrate its use through a zero-resource task: spoken term discovery. The dataset is made available to the community for reproducible computational language documentation experiments and their evaluation.Comment: accepted to LREC 201

    Ordering in spatial evolutionary games for pairwise collective strategy updates

    Full text link
    Evolutionary 2×22 \times 2 games are studied with players located on a square lattice. During the evolution the randomly chosen neighboring players try to maximize their collective income by adopting a random strategy pair with a probability dependent on the difference of their summed payoffs between the final and initial state assuming quenched strategies in their neighborhood. In the case of the anti-coordination game this system behaves alike an anti-ferromagnetic kinetic Ising model. Within a wide region of social dilemmas this dynamical rule supports the formation of similar spatial arrangement of the cooperators and defectors ensuring the optimum total payoff if the temptation to choose defection exceeds a threshold value dependent on the sucker's payoff. The comparison of the results with those achieved for pairwise imitation and myopic strategy updates has indicated the relevant advantage of pairwise collective strategy update in the maintenance of cooperation.Comment: 9 pages, 6 figures; accepted for publication in Physical Review

    Quantum mechanics gives stability to a Nash equilibrium

    Get PDF
    We consider a slightly modified version of the Rock-Scissors-Paper (RSP) game from the point of view of evolutionary stability. In its classical version the game has a mixed Nash equilibrium (NE) not stable against mutants. We find a quantized version of the RSP game for which the classical mixed NE becomes stable.Comment: Revised on referee's criticism, submitted to Physical Review

    Geochemistry and deposition of Be-7 in river‐estuarine and coastal waters

    Get PDF
    The atmospheric flux of cosmogenic Be-7 (53.3-day half-life) and the mode of ?Be deposition in river- estuarine and coastal environments have been examined. The atmospheric flux of ?Be commonly sup- ports inventories ranging from 1.0 to 2.0 pCi/cm 2 (1 pCi = 0.037 Bq). Beryllium 7 concentrations in water phase samples, collected across salinity gradients in several estuaries along the eastern coastline of the United States, range from 0.03 to 0.53 pCi/L and primarily reflect variations in Be-7supply and sorption kinetics. The major process controlling the concentration of Be-7 on estuarine suspended particles appears to be the length of time that these particles remain in the water column. Field particle-to- water distribution coefficients for Be-7have a median value of about 4 x 10 \u27‱ but range over an order of magnitude reflecting short-term variations in 7Be input, particle dynamics, and particulate iron content rather than equilibrium sorption-desorption responses to changes in water salinity or particle type. Residence times of 7Be in the water column range from a few days in estuarine areas of rapid fine-particle deposition, to several weeks in high-energy environments where pronounced sediment resuspension reintroduces deposited 7Be back into the water column. Inventories of ?Be in sediments range-from nondetectable to 3.3 pCi/cm 2, with the highest inventories in areas where fine particles are accumulating rapidly. Such sites are also major repositories for other particle-reactive substances. A ?Be budget for the James estuary indicates that less than 5% of the expected ?Be input is in the water column and that the short-term estuarine trapping efficiency for atmospherically derived ?Be is somewhere between 50 and 100%

    Origin of complexity in multicellular organisms

    Full text link
    Through extensive studies of dynamical system modeling cellular growth and reproduction, we find evidence that complexity arises in multicellular organisms naturally through evolution. Without any elaborate control mechanism, these systems can exhibit complex pattern formation with spontaneous cell differentiation. Such systems employ a `cooperative' use of resources and maintain a larger growth speed than simple cell systems, which exist in a homogeneous state and behave 'selfishly'. The relevance of the diversity of chemicals and reaction dynamics to the growth of a multicellular organism is demonstrated. Chaotic biochemical dynamics are found to provide the multi-potency of stem cells.Comment: 6 pages, 2 figures, Physical Review Letters, 84, 6130, (2000

    The shape of ecological networks

    Full text link
    We study the statistics of ecosystems with a variable number of co-evolving species. The species interact in two ways: by prey-predator relationships and by direct competition with similar kinds. The interaction coefficients change slowly through successful adaptations and speciations. We treat them as quenched random variables. These interactions determine long-term topological features of the species network, which are found to agree with those of biological systems.Comment: 4 pages, 2 figure
    • 

    corecore