6,473 research outputs found

    Geologic considerations in underground coal mining system design

    Get PDF
    Geologic characteristics of coal resources which may impact new extraction technologies are identified and described to aid system designers and planners in their task of designing advanced coal extraction systems for the central Appalachian region. These geologic conditions are then organized into a matrix identified as the baseline mine concept. A sample region, eastern Kentucy is analyzed using both the developed baseline mine concept and the traditional geologic investigative approach

    Adsorption properties and third sound propagation in superfluid 4^4He films on carbon nanotubes

    Full text link
    We consider the adsorption properties of superfluid 4^4He films on carbon nanotubes. One major factor in the adsorption is the surface tension force arising from the very small diameter of the nanotubes. Calculations show that surface tension keeps the film thickness on the tubes very thin even when the helium vapor is increased to the saturated pressure. The weakened Van der Waals force due to the cylindrical geometry also contributes to this. Both of these effects act to lower the predicted velocity of third sound propagation along the tubes. It does not appear that superfluidity will be possible on single-walled nanotubes of diameter about one nm, since the film thickness is less than 3 atomic layers even at saturation. Superfluidity is possible on larger-diameter nanotube bundles and multi-walled nanotubes, however. We have observed third sound signals on nanotube bundles of average diameter 5 nm which are sprayed onto a Plexiglass surface, forming a network of tubes.Comment: 4 pages, accepted for Journal of Physics: Conference Series (Proceedings of LT25

    Auroral vector electric field and particle comparisons. 1: Pre-midnight convection topology

    Get PDF
    Polar 3 was launched in northern Norway on January 27, 1974. Traversing nearly 3 deg latitude, the rocket crossed over a stable IBC II auroral arc in the positive bay region and continued north to a convection boundary which was identified as the Harang discontinuity. Measurement of the complete electric field vector, of energetic electrons and of the auroral N+2 and OI emissions were used to study the convection topology in the pre-magnetic-midnight region. A strong anticorrelation was observed between the electric field and the precipitating energetic electrons. The inverted V nature of the electron precipitations at the convection boundary, compared with the lack of such structure over the arc which was within the positive bay region, leads to the conclusion that auroral arcs are likely to be associated with inverted V type precipitation only at or poleward of convection boundaries and their eddy structures

    A heparin-mimicking polymer conjugate stabilizes basic fibroblast growth factor.

    Get PDF
    Basic fibroblast growth factor (bFGF) is a protein that plays a crucial role in diverse cellular functions, from wound healing to bone regeneration. However, a major obstacle to the widespread application of bFGF is its inherent instability during storage and delivery. Here, we describe the stabilization of bFGF by covalent conjugation with a heparin-mimicking polymer, a copolymer consisting of styrene sulfonate units and methyl methacrylate units bearing poly(ethylene glycol) side chains. The bFGF conjugate of this polymer retained bioactivity after synthesis and was stable to a variety of environmentally and therapeutically relevant stressors--such as heat, mild and harsh acidic conditions, storage and proteolytic degradation--unlike native bFGF. Following the application of stress, the conjugate was also significantly more active than the control conjugate system in which the styrene sulfonate units were omitted from the polymer structure. This research has important implications for the clinical use of bFGF and for the stabilization of heparin-binding growth factors in general

    Strategies for the evolution of sex

    Get PDF
    We find that the hypothesis made by Jan, Stauffer and Moseley [Theory in Biosc., 119, 166 (2000)] for the evolution of sex, namely a strategy devised to escape extinction due to too many deleterious mutations, is sufficient but not necessary for the successful evolution of a steady state population of sexual individuals within a finite population. Simply allowing for a finite probability for conversion to sex in each generation also gives rise to a stable sexual population, in the presence of an upper limit on the number of deleterious mutations per individual. For large values of this probability, we find a phase transition to an intermittent, multi-stable regime. On the other hand, in the limit of extremely slow drive, another transition takes place to a different steady state distribution, with fewer deleterious mutations within the asexual population.Comment: RevTeX, 11 pages, multicolumn, including 12 figure

    Quantum mechanics gives stability to a Nash equilibrium

    Get PDF
    We consider a slightly modified version of the Rock-Scissors-Paper (RSP) game from the point of view of evolutionary stability. In its classical version the game has a mixed Nash equilibrium (NE) not stable against mutants. We find a quantized version of the RSP game for which the classical mixed NE becomes stable.Comment: Revised on referee's criticism, submitted to Physical Review
    corecore