16 research outputs found

    The histology of ovarian cancer: worldwide distribution and implications for international survival comparisons (CONCORD-2)

    Get PDF
    Objective Ovarian cancers comprise several histologically distinct tumour groups with widely different prognosis. We aimed to describe the worldwide distribution of ovarian cancer histology and to understand what role this may play in international variation in survival. Methods The CONCORD programme is the largest population-based study of global trends in cancer survival. Data on 681,759 women diagnosed during 1995â\u80\u932009 with cancer of the ovary, fallopian tube, peritoneum and retroperitonum in 51 countries were included. We categorised ovarian tumours into six histological groups, and explored the worldwide distribution of histology. Results During 2005â\u80\u932009, type II epithelial tumours were the most common. The proportion was much higher in Oceania (73.1%), North America (73.0%) and Europe (72.6%) than in Central and South America (65.7%) and Asia (56.1%). By contrast, type I epithelial tumours were more common in Asia (32.5%), compared with only 19.4% in North America. From 1995 to 2009, the proportion of type II epithelial tumours increased from 68.6% to 71.1%, while the proportion of type I epithelial tumours fell from 23.8% to 21.2%. The proportions of germ cell tumours, sex cord-stromal tumours, other specific non-epithelial tumours and tumours of non-specific morphology all remained stable over time. Conclusions The distribution of ovarian cancer histology varies widely worldwide. Type I epithelial, germ cell and sex cord-stromal tumours are generally associated with higher survival than type II tumours, so the proportion of these tumours may influence survival estimates for all ovarian cancers combined. The distribution of histological groups should be considered when comparing survival between countries and regions

    Burden and centralised treatment in Europe of rare tumours: results of RARECAREnet - a population-based study

    Get PDF
    Background Rare cancers pose challenges for diagnosis, treatments, and clinical decision making. Information about rare cancers is scant. The RARECARE project defined rare cancers as those with an annual incidence of less than six per 100 000 people in European Union (EU). We updated the estimates of the burden of rare cancers in Europe, their time trends in incidence and survival, and provide information about centralisation of treatments in seven European countries. Methods We analysed data from 94 cancer registries for more than 2 million rare cancer diagnoses, to estimate European incidence and survival in 2000–07 and the corresponding time trends during 1995–2007. Incidence was calculated as the number of new cases divided by the corresponding total person-years in the population. 5-year relative survival was calculated by the Ederer-2 method. Seven registries (Belgium, Bulgaria, Finland, Ireland, the Netherlands, Slovenia, and the Navarra region in Spain) provided additional data for hospitals treating about 220 000 cases diagnosed in 2000–07. We also calculated hospital volume admission as the number of treatments provided by each hospital rare cancer group sharing the same referral pattern. Findings Rare cancers accounted for 24% of all cancers diagnosed in the EU during 2000–07. The overall incidence rose annually by 0.5% (99·8% CI 0·3–0·8). 5-year relative survival for all rare cancers was 48·5% (95% CI 48·4 to 48·6), compared with 63·4% (95% CI 63·3 to 63·4) for all common cancers. 5-year relative survival increased (overall 2·9%, 95% CI 2·7 to 3·2), from 1999–2001 to 2007–09, and for most rare cancers, with the largest increases for haematological tumours and sarcomas. The amount of centralisation of rare cancer treatment varied widely between cancers and between countries. The Netherlands and Slovenia had the highest treatment volumes. Interpretation Our study benefits from the largest pool of population-based registries to estimate incidence and survival of about 200 rare cancers. Incidence trends can be explained by changes in known risk factors, improved diagnosis, and registration problems. Survival could be improved by early diagnosis, new treatments, and improved case management. The centralisation of treatment could be improved in the seven European countries we studied. Funding The European Commission (Chafea)

    Rare cancers are not so rare: The rare cancer burden in Europe

    No full text

    The EUROCARE-4 database on cancer survival in Europe: data standardisation, quality control and methods of statistical analysis.

    No full text
    This paper describes the collection, standardisation and checking of cancer survival data included in the EUROCARE-4 database. Methods for estimating relative survival are also described. Incidence and vital status data on newly diagnosed European cancer cases were received from 93 cancer registries in 23 countries, covering 151,400,000 people (35% of the participating country population). The third revision of the International Classification of Diseases for Oncology was used to specify tumour topography and morphology. Records were extensively checked for consistency and compatibility using multiple routines; flagged records were sent back for correction. An algorithm assigned standardised sequence numbers to multiple cancers. Only first malignant cancers were used to estimate relative survival from registry, year, sex and age-specific life tables. Age-adjusted and Europe-wide survival were also estimated. The database contains 13,814,573 cases diagnosed in 1978-2002; 92% malignant. A negligible proportion of records was excluded for major errors. Of 5,753,934 malignant adult cases diagnosed in 1995-2002, 5.3% were second or later cancers, 2.7% were known from death certificates only and 0.4% were discovered at autopsy. The remaining 5,278,670 cases entered the survival analyses, 90% of these had microscopic confirmation and 1.3% were censored alive after less than five years' follow-up. These indicators suggest satisfactory data quality that has improved since EUROCARE-3

    Comparative cancer survival information in Europe.

    No full text
    Zambon P for EUROCARE Working Group (in appendix

    EUROCARE-4. Survival of cancer patients diagnosed in 1995-1999. Results and commentary.

    No full text
    EUROCARE-4 analysed about three million adult cancer cases from 82 cancer registries in 23 European countries, diagnosed in 1995-1999 and followed to December 2003. For each cancer site, the mean European area-weighted observed and relative survival at 1-, 3-, and 5-years by age and sex are presented. Country-specific 1- and 5-year relative survival is also shown, together with 5-year relative survival conditional to surviving 1-year. Within-country variation in survival is analysed for selected cancers. Survival for most solid cancers, whose prognosis depends largely on stage at diagnosis (breast, colorectum, stomach, skin melanoma), was highest in Finland, Sweden, Norway and Iceland, lower in the UK and Denmark, and lowest in the Czech Republic, Poland and Slovenia. France, Switzerland and Italy generally had high survival, slightly below that in the northern countries. There were between-region differences in the survival for haematologic malignancies, possibly due to differences in the availability of effective treatments. Survival of elderly patients was low probably due to advanced stage at diagnosis, comorbidities, difficult access or lack of availability of appropriate care. For all cancers, 5-year survival conditional to surviving 1-year was higher and varied less with region, than the overall relative survival

    Long-term survival expectations of cancer patients in Europe in 2000-2002.

    No full text
    Period analysis has been shown to provide more up-to-date estimates of long-term cancer survival rates than traditional cohort-based analysis. Here, we provide detailed period estimates of 5- and 10-year relative survival by cancer site, country, sex and age for calendar years 2000-2002. In addition, pan-European estimates of 1-, 5- and 10-year relative survival are provided. Overall, survival estimates were mostly higher than previously available cohort estimates. For most cancer sites, survival in countries from Northern Europe, Central Europe and Southern Europe was substantially higher than in the United Kingdom and Ireland and in countries from Eastern Europe. Furthermore, relative survival was also better in female than in male patients and decreased with age for most cancer sites

    Survival trends in European cancer patients diagnosed from 1988 to 1999.

    No full text
    We analysed data from 49 cancer registries in 18 European countries over the period 1988-1999 to delineate time trends in cancer survival. Survival increased in Europe over the study period for all cancer sites that were considered. There were major survival increases in 5 year age-adjusted relative survival for prostate (from 58% to 79%), colon and rectum (from 48% to 54% men and women), and breast (from 74% to 83%). Improvements were also significant for stomach (from 22% to 24%), male larynx (from 62% to 64%), skin melanoma (from 78% to 83%), Hodgkin disease (from 77% to 83%), non-Hodgkin lymphoma (from 49% to 56%), leukaemias (from 37% to 42%), and for all cancers combined (from 34% to 39% in men, and from 52% to 59% in women). Survival did not change significantly for female larynx, lung, cervix or ovary. The largest increases in survival typically occurred in countries with the lowest survival, and contributed to the overall reduction of survival disparities across Europe over the study period. Differences in the extent of PSA testing and mammographic screening, and increasing use of colonoscopy and faecal blood testing together with improving cancer care are probably the major underlying reasons for the improvements in survival for cancers of prostate, breast, colon and rectum. The marked survival improvements in countries with poor survival may indicate that these countries have made efforts to adopt the new diagnostic procedures and the standardised therapeutic protocols in use in more affluent countries
    corecore