44 research outputs found

    Discovery of Salmonella trehalose phospholipids reveals functional convergence with mycobacteria.

    Get PDF
    Salmonella species are among the world's most prevalent pathogens. Because the cell wall interfaces with the host, we designed a lipidomics approach to reveal pathogen-specific cell wall compounds. Among the molecules differentially expressed between Salmonella Paratyphi and S. Typhi, we focused on lipids that are enriched in S. Typhi, because it causes typhoid fever. We discovered a previously unknown family of trehalose phospholipids, 6,6'-diphosphatidyltrehalose (diPT) and 6-phosphatidyltrehalose (PT). Cardiolipin synthase B (ClsB) is essential for PT and diPT but not for cardiolipin biosynthesis. Chemotyping outperformed clsB homology analysis in evaluating synthesis of diPT. DiPT is restricted to a subset of Gram-negative bacteria: large amounts are produced by S. Typhi, lower amounts by other pathogens, and variable amounts by Escherichia coli strains. DiPT activates Mincle, a macrophage activating receptor that also recognizes mycobacterial cord factor (6,6'-trehalose dimycolate). Thus, Gram-negative bacteria show convergent function with mycobacteria. Overall, we discovered a previously unknown immunostimulant that is selectively expressed among medically important bacterial species

    Human T cell response to CD1a and contact dermatitis allergens in botanical extracts and commercial skin care products

    Get PDF
    During industrialization, humans have been exposed to increasing numbers of foreign chemicals. Failure of the immune system to tolerate drugs, cosmetics, and other skin products causes allergic contact dermatitis, a T cell–mediated disease with rising prevalence. Models of αβ T cell response emphasize T cell receptor (TCR) contact with peptide-MHC complexes, but this model cannot readily explain activation by most contact dermatitis allergens, which are nonpeptidic molecules. We tested whether CD1a, an abundant MHC I–like protein in human skin, mediates contact allergen recognition. Using CD1a-autoreactive human αβ T cell clones to screen clinically important allergens present in skin patch testing kits, we identified responses to balsam of Peru, a tree oil widely used in cosmetics and toothpaste. Additional purification identified benzyl benzoate and benzyl cinnamate as antigenic compounds within balsam of Peru. Screening of structurally related compounds revealed additional stimulants of CD1a-restricted T cells, including farnesol and coenzyme Q2. Certain general chemical features controlled response: small size, extreme hydrophobicity, and chemical constraint from rings and unsaturations. Unlike lipid antigens that protrude to form epitopes and contact TCRs, the small size of farnesol allows sequestration deeply within CD1a, where it displaces self-lipids and unmasks the CD1a surface. These studies identify molecular connections between CD1a and hypersensitivity to consumer products, defining a mechanism that could plausibly explain the many known T cell responses to oily substances

    CD1 lipidomes reveal lipid-binding motifs and size-based antigen-display mechanisms

    Get PDF
    The CD1 system binds lipid antigens for display to T cells. Here, we solved lipidomes for the four human CD1 antigen-presenting molecules, providing a map of self-lipid display. Answering a basic question, the detection of >2,000 CD1-lipid complexes demonstrates broad presentation of self-sphingolipids and phospholipids. Whereas peptide antigens are chemically processed, many lipids are presented in an unaltered form. However, each type of CD1 protein differentially edits the self-lipidome to show distinct capture motifs based on lipid length and chemical composition, suggesting general antigen display mechanisms. For CD1a and CD1d, lipid size matches the CD1 cleft volume. CD1c cleft size is more variable, and CD1b is the outlier, where ligands and clefts show an extreme size mismatch that is explained by uniformly seating two small lipids in one cleft. Furthermore, the list of compounds that comprise the integrated CD1 lipidome supports the ongoing discovery of lipid blockers and antigens for T cells

    Species Interactions during Diversification and Community Assembly in an Island Radiation of Shrews

    Get PDF
    Closely related, ecologically similar species often have adjacent distributions, suggesting competitive exclusion may contribute to the structure of some natural communities. In systems such as island archipelagos, where speciation is often tightly associated with dispersal over oceanic barriers, competitive exclusion may prevent population establishment following inter-island dispersal and subsequent cladogenesis.) species in the Philippines are the result of competitive exclusion preventing secondary invasion of occupied islands. We first compare ecological niche models between two widespread, allopatric species and find statistical support for their ecological similarity, implying that competition for habitat between these species is possible. We then examine dispersion patterns among sympatric species and find some signal for overdispersion of body size, but not for phylogenetic branch length. Finally, we simulate the process of inter-island colonization under a stochastic model of dispersal lacking ecological forces. Results are dependent on the geographic scope and colonization probability employed. However, some combinations suggest that the number of inter-island dispersal events necessary to populate the archipelago may be much higher than the minimum number of colonization events necessary to explain current estimates of species richness and phylogenetic relationships. If our model is appropriate, these results imply that alternative factors, such as competitive exclusion, may have influenced the process of inter-island colonization and subsequent cladogenesis.We interpret the combined results as providing tenuous evidence that similarity in body size may prevent co-occurrence in Philippine shrews and that competitive exclusion among ecologically similar species, rather than an inability to disperse among islands, may have limited diversification in this group, and, possibly other clades endemic to island archipelagos

    T cell autoreactivity directed toward CD1c itself rather than toward carried self lipids

    Get PDF
    The hallmark function of αβ T cell antigen receptors (TCRs) involves the highly specific co-recognition of a major histocompatibility complex molecule and its carried peptide. However, the molecular basis of the interactions of TCRs with the lipid antigen–presenting molecule CD1c is unknown. We identified frequent staining of human T cells with CD1c tetramers across numerous subjects. Whereas TCRs typically show high specificity for antigen, both tetramer binding and autoreactivity occurred with CD1c in complex with numerous, chemically diverse self lipids. Such extreme polyspecificity was attributable to binding of the TCR over the closed surface of CD1c, with the TCR covering the portal where lipids normally protrude. The TCR essentially failed to contact lipids because they were fully seated within CD1c. These data demonstrate the sequestration of lipids within CD1c as a mechanism of autoreactivity and point to small lipid size as a determinant of autoreactive T cell responses

    Implementing LGBTQ Curricular Change: A Trainee-Driven Interdisciplinary Approach

    No full text
    The release of the AAMC curriculum guidelines pertaining to people who are LGBT, gender nonconforming, or born with differences of sex development (DSD) in 2014 significantly enhanced medical schools’ ability to implement curricular change. At our institution, we began this process with the goal of making it as trainee-driven as possible. Though our curricular reform coalition initially consisted only of students and faculty from the School of Medicine, we have expanded to include students, residents, and faculty members, as well as trainees from other health sciences programs, including pharmacy and nursing. We have structured our efforts around the “salt and pepper” approach: incorporating small changes wherever possible to move the curriculum from heteronormative to LGBTQ-inclusive, e.g. modification of existing sexual history taking curriculum to include LGBTQ facets and appropriate reflective exercises. A needs assessment targeting one cohort of medical students informed our process. Aside from our primary goal of improving healthcare for LGBTQ people, we believe our process yields important educational and institutional benefits. Through participating in and leading our efforts, trainees are prepared to become leaders in academic medicine by practicing foundational skills including communication, coalition formation, and interprofessional collaboration. Further, trainees have presented posters, contributed to a submission being prepared for MedEdPortal, attended BNGAP conferences, and presented findings to our school’s curriculum committee. Finally, by involving people from multiple programs at every level of education, we have created a deeply-rooted collaborative that can function to provide curricular-reform resources to educators across the health sciences. This poster details our efforts with special emphasis on recruitment and involvement of trainees and interdisciplinary outreach
    corecore