25,882 research outputs found

    Determination of spin polarization in InAs/GaAs self-assembled quantum dots

    Full text link
    The spin polarization of electrons trapped in InAs self-assembled quantum dot ensembles is investigated. A statistical approach for the population of the spin levels allows one to infer the spin polarization from the measure values of the addition energies. From the magneto-capacitance spectroscopy data, the authors found a fully polarized ensemble of electronic spins above 10 T when B[001]\mathbf{B}\parallel[001] and at 2.8 K. Finally, by including the g-tensor anisotropy the angular dependence of spin polarization with the magnetic field B\mathbf{B} orientation and strength could be determined.Comment: 3 pages, 2 figures, Accepted Appl. Phys. Let

    Microstrip resonator for microwaves with controllable polarization

    Full text link
    In this work the authors implemented a resonator based upon microstrip cavities that permits the generation of microwaves with arbitrary polarization. Design, simulation, and implementation of the resonators were performed using standard printed circuit boards. The electric field distribution was mapped using a scanning probe cavity perturbation technique. Electron spin resonance using a standard marker was carried out in order to verify the polarization control from linear to circular.Comment: 3 pages, 3 figures, submitted to Appl. Phys. Let

    Lande g-tensor in semiconductor nanostructures

    Get PDF
    Understanding the electronic structure of semiconductor nanostructures is not complete without a detailed description of their corresponding spin-related properties. Here we explore the response of the shell structure of InAs self-assembled quantum dots to magnetic fields oriented in several directions, allowing the mapping of the g-tensor modulus for the s and p shells. We found that the g-tensors for the s and p shells show a very different behavior. The s-state in being more localized allows the probing of the confining potential details by sweeping the magnetic field orientation from the growth direction towards the in-plane direction. As for the p-state, we found that the g-tensor modulus is closer to that of the surrounding GaAs, consistent with a larger delocalization. These results reveal further details of the confining potentials of self-assembled quantum dots that have not yet been probed, in addition to the assessment of the g-tensor, which is of fundamental importance for the implementation of spin related applications.Comment: 4 pages, 4 figure

    Dynamic heterogeneities in critical coarsening: Exact results for correlation and response fluctuations in finite-sized spherical models

    Full text link
    We study dynamic heterogeneities in the out-of-equilibrium coarsening dynamics of the spherical ferromagnet after a quench from infinite temperature to its critical point. A standard way of probing such heterogeneities is by monitoring the fluctuations of correlation and susceptibility, coarse-grained over mesoscopic regions. We discuss how to define fluctuating coarse-grained correlations (C) and susceptibilities (Chi) in models where no quenched disorder is present. Our focus for the spherical model is on coarse-graining over the whole volume of NN spins, which requires accounting for N^{-1/2} non-Gaussian fluctuations of the spin. The latter are treated as a perturbation about the leading order Gaussian statistics. We obtain exact results for these quantities, which enable us to characterise the joint distribution of C and Chi fluctuations. We find that this distribution is qualitatively different, even for equilibrium above criticality, from the spin-glass scenario where C and Chi fluctuations are linked in a manner akin to the fluctuation-dissipation relation between the average C and Chi. Our results show that coarsening at criticality is clearly heterogeneous for d>4 and suggest that, as in other glassy systems, there is a well-defined timescale on which fluctuations across thermal histories are largest. Surprisingly, however, neither this timescale nor the amplitude of the heterogeneities increase with the age of the system, as would be expected from the growing correlation length. For d<4, the strength of the fluctuations varies on a timescale proportional to the age of the system; the corresponding amplitude also grows with age, but does not scale with the correlation volume as might have been expected naively.Comment: 39 pages, 9 figures, version for publication in J. Stat. Mech. Shortened by cutting all technical details in section 6, with minor corrections elsewher

    Polarization-selective excitation of N-V centers in diamond

    Full text link
    The nitrogen-vacancy (N-V) center in diamond is promising as an electron spin qubit due to its long-lived coherence and optical addressability. The ground state is a spin triplet with two levels (ms=±1m_s = \pm 1) degenerate at zero magnetic field. Polarization-selective microwave excitation is an attractive method to address the spin transitions independently, since this allows operation down to zero magnetic field. Using a resonator designed to produce circularly polarized microwaves, we have investigated the polarization selection rules of the N-V center. We first apply this technique to N-V ensembles in [100] and [111]-oriented samples. Next, we demonstrate an imaging technique, based on optical polarization dependence, that allows rapid identification of the orientations of many single N-V centers. Finally, we test the microwave polarization selection rules of individual N-V centers of known orientation

    On the spectrum of Farey and Gauss maps

    Full text link
    In this paper we introduce Hilbert spaces of holomorphic functions given by generalized Borel and Laplace transforms which are left invariant by the transfer operators of the Farey map and its induced version, the Gauss map, respectively. By means of a suitable operator-valued power series we are able to study simultaneously the spectrum of both these operators along with the analytic properties of the associated dynamical zeta functions.Comment: 23 page

    Local estimates for entropy densities in coupled map lattices

    Full text link
    We present a method to derive an upper bound for the entropy density of coupled map lattices with local interactions from local observations. To do this, we use an embedding technique being a combination of time delay and spatial embedding. This embedding allows us to identify the local character of the equations of motion. Based on this method we present an approximate estimate of the entropy density by the correlation integral.Comment: 4 pages, 5 figures include

    Rational Trust Modeling

    Get PDF
    Trust models are widely used in various computer science disciplines. The main purpose of a trust model is to continuously measure trustworthiness of a set of entities based on their behaviors. In this article, the novel notion of "rational trust modeling" is introduced by bridging trust management and game theory. Note that trust models/reputation systems have been used in game theory (e.g., repeated games) for a long time, however, game theory has not been utilized in the process of trust model construction; this is where the novelty of our approach comes from. In our proposed setting, the designer of a trust model assumes that the players who intend to utilize the model are rational/selfish, i.e., they decide to become trustworthy or untrustworthy based on the utility that they can gain. In other words, the players are incentivized (or penalized) by the model itself to act properly. The problem of trust management can be then approached by game theoretical analyses and solution concepts such as Nash equilibrium. Although rationality might be built-in in some existing trust models, we intend to formalize the notion of rational trust modeling from the designer's perspective. This approach will result in two fascinating outcomes. First of all, the designer of a trust model can incentivise trustworthiness in the first place by incorporating proper parameters into the trust function, which can be later utilized among selfish players in strategic trust-based interactions (e.g., e-commerce scenarios). Furthermore, using a rational trust model, we can prevent many well-known attacks on trust models. These two prominent properties also help us to predict behavior of the players in subsequent steps by game theoretical analyses

    Escape configuration lattice near the nematic-isotropic transition: Tilt analogue of blue phases

    Full text link
    We predict the possible existence of a new phase of liquid crystals near the nematic-isotropic (NI NI ) transition. This phase is an achiral, tilt-analogue of the blue phase and is composed of a lattice of {\em double-tilt}, escape-configuration cylinders. We discuss the structure and the stability of this phase and provide an estimate of the lattice parameter.Comment: 5 pages, 6 figures (major revision, typos corrected, references added
    corecore