747 research outputs found
The Unfolding Story of a Redox Chaperone
Oxidative stress, especially in combination with heat stress, poses a life-threatening challenge to many organisms by causing protein misfolding and aggregation. In this issue, Reichmann et al. demonstrate how a destabilized linker region of the bacterial chaperone Hsp33 prevents aggregation of a denatured protein by stabilizing structural elements
Insights into the molecular mechanism of allostery in Hsp70s
Hsp70s chaperone an amazing number and variety of cellular protein folding processes. Key to their versatility is the recognition of a short degenerate sequence motif, present in practically all polypeptides, and a bidirectional allosteric intramolecular regulation mechanism linking their N-terminal nucleotide binding domain (NBD) and their C-terminal polypeptide substrate binding domain (SBD). Through this interdomain communication ATP binding to the NBD and ATP hydrolysis control the affinity of the SBD for polypeptide substrates and substrate binding to the SBD triggers ATP hydrolysis. Genetic screens for defective variants of Hsp70s and systematic analysis of available structures of the isolated domains revealed some residues involved in allosteric control. Recent elucidation of the crystal structure of the Hsp70 homolog DnaK in the ATP bound open conformation as well as numerous NMR and mutagenesis studies bring us closer to an understanding of the communication between NBD and SBD. In this review we will discuss our current view of the allosteric control mechanism of Hsp70 chaperones
Protein quality control:from mechanism to disease EMBO Workshop, Costa de la Calma (Mallorca), Spain, April 28-May 03, 2019
The cellular protein quality control machinery with its central constituents of chaperones and proteases is vital to maintain protein homeostasis under physiological conditions and to protect against acute stress conditions. Imbalances in protein homeostasis also are keys to a plethora of genetic and acquired, often age-related, diseases as well as aging in general. At the EMBO Workshop, speakers covered all major aspects of cellular protein quality control, from basic mechanisms at the molecular, cellular, and organismal level to medical translation. In this report, the highlights of the meeting will be summarized
Unstructured regions in IRE1α specify BiP-mediated destabilisation of the luminal domain dimer and repression of the UPR
Funder: Medical Research Council; FundRef: http://dx.doi.org/10.13039/501100000265Funder: European Molecular Biology Organization; FundRef: http://dx.doi.org/10.13039/100004410Coupling of endoplasmic reticulum (ER) stress to dimerisation-dependent activation of the UPR transducer IRE1 is incompletely understood. Whilst the luminal co-chaperone ERdj4 promotes a complex between the Hsp70 BiP and IRE1’s stress-sensing luminal domain (IRE1LD) that favours the latter’s monomeric inactive state and loss of ERdj4 de-represses IRE1, evidence linking these cellular and in vitro observations is presently lacking. We report that enforced loading of endogenous BiP onto endogenous IRE1α repressed UPR signalling in CHO cells and deletions in the IRE1α locus that de-repressed the UPR in cells, encode flexible regions of IRE1LD that mediated BiP-induced monomerisation in vitro. Changes in the hydrogen exchange mass spectrometry profile of IRE1LD induced by ERdj4 and BiP confirmed monomerisation and were consistent with active destabilisation of the IRE1LD dimer. Together, these observations support a competition model whereby waning ER stress passively partitions ERdj4 and BiP to IRE1LD to initiate active repression of UPR signalling
Unstructured regions in IRE1α specify BiP-mediated destabilisation of the luminal domain dimer and repression of the UPR
Coupling of endoplasmic reticulum stress to dimerisation‑dependent activation of the UPR transducer IRE1 is incompletely understood. Whilst the luminal co-chaperone ERdj4 promotes a complex between the Hsp70 BiP and IRE1's stress-sensing luminal domain (IRE1LD) that favours the latter's monomeric inactive state and loss of ERdj4 de-represses IRE1, evidence linking these cellular and in vitro observations is presently lacking. We report that enforced loading of endogenous BiP onto endogenous IRE1α repressed UPR signalling in CHO cells and deletions in the IRE1α locus that de-repressed the UPR in cells, encode flexible regions of IRE1LD that mediated BiP‑induced monomerisation in vitro. Changes in the hydrogen exchange mass spectrometry profile of IRE1LD induced by ERdj4 and BiP confirmed monomerisation and were consistent with active destabilisation of the IRE1LD dimer. Together, these observations support a competition model whereby waning ER stress passively partitions ERdj4 and BiP to IRE1LD to initiate active repression of UPR signalling
Increasing awareness of climate change with immersive virtual reality
Previous research has shown that immersive virtual reality (VR) is a suitable tool for visualizing the consequences of climate change. The aim of the present study was to investigate whether visualization in VR has a stronger influence on climate change awareness and environmental attitudes compared to traditional media. Furthermore, it was examined how realistic a VR experience has to be in order to have an effect. The VR experience consisted of a model of the Aletsch glacier (Switzerland) melting over the course of 220 years. Explicit measurements (new environmental paradigm NEP, climate change scepticism, and nature relatedness) and an implicit measurement (implicit association test) were collected before and after the VR intervention and compared to three different non-VR control conditions (video, images with text, and plain text). In addition, the VR environment was varied in terms of degrees of realism and sophistication (3 conditions: abstract visualization, less sophisticated realistic visualization, more sophisticated realistic visualization). The six experimental conditions (3 VR conditions, three control conditions) were modeled as mixed effects, with VR versus control used as a fixed effect in a mixed effects modeling framework. Across all six conditions, environmental awareness (NEP) was higher after the participants (N = 142) had been confronted with the glacier melting, while no differences were found for nature relatedness and climate change scepticism before and after the interventions. There was no significant difference between VR and control conditions for any of the four measurements. Nevertheless, contrast analyses revealed that environmental awareness increased significantly only for the VR but not for the control conditions, suggesting that VR is more likely to lead to attitude change. Our results show that exposure to VR environments successfully increased environmental awareness independently of the design choices, suggesting that even abstract and less sophisticated VR environment designs may be sufficient to increase pro-environmental attitudes
Stereochemistry of phase-1 metabolites of mephedrone determines their effectiveness as releasers at the serotonin transporter
Mephedrone (4-methyl-N-methylcathinone) is a psychostimulant that promotes release of monoamines via the high affinity transporters for dopamine (DAT), norepinephrine (NET) and serotonin (SERT). Metabolic breakdown of mephedrone results in bioactive metabolites that act as substrate-type releasers at monoamine transporters and stereospecific metabolism of mephedrone has been reported. This study compared the effects of the enantiomers of the phase-1 metabolites nor-mephedrone, 4-hydroxytolyl-mephedrone (4-OH-mephedrone) and dihydro-mephedrone on (i) DAT, NET and SERT mediated substrate fluxes, (ii) determined their binding affinities towards a battery of monoamine receptors and (iii) examined the relative abundance of the enantiomers in human urine. Each of the enantiomers tested inhibited uptake mediated by DAT, NET and SERT. No marked differences were detected at DAT and NET. However, at SERT, the S-enantiomers of nor-mephedrone and 4-OH-mephedrone were several times more potent than the corresponding R-enantiomers. Moreover, the R-enantiomers were markedly less effective as releasers at SERT. S-nor-mephedrone displayed moderate affinities towards human alpha; 1A; , human 5-HT; 2A; and rat and mouse trace amine-associated receptor 1. These results demonstrate that stereochemistry dictates the pharmacodynamics of the phase-1 metabolites of mephedrone at SERT, but not at DAT and NET, which manifests in marked differences in their relative potencies, i.e. DAT/SERT ratios. Chiral analysis of urine samples demonstrated that nor-mephedrone predominantly exists as the S-enantiomer. Given the asymmetric abundance of the enantiomers in biological samples, these findings may add to our understanding of the subjective effects of administered mephedrone, which indicate pronounced effects on the serotonergic system
Human Hsp70 Disaggregase reverses Parkinson’s-linked α-Synuclein Amyloid Fibrils
Intracellular amyloid fibrils linked to neurodegenerative disease typically accumulate in an age-related manner, suggesting inherent cellular capacity for counteracting amyloid formation in early life. Metazoan molecular chaperones assist native folding and block polymerization of amyloidogenic proteins, preempting amyloid fibril formation. Chaperone capacity for amyloid disassembly, however, is unclear. Here, we show that a specific combination of human Hsp70 disaggregase-associated chaperone components efficiently disassembles α-synuclein amyloid fibrils characteristic of Parkinson’s disease in vitro. Specifically, the Hsc70 chaperone, the class B J-protein DNAJB1, and an Hsp110 family nucleotide exchange factor (NEF) provide ATP-dependent activity that disassembles amyloids within minutes via combined fibril fragmentation and depolymerization. This ultimately generates non-toxic α-synuclein monomers. Concerted, rapid interaction cycles of all three chaperone components with fibrils generate the power stroke required for disassembly. This identifies a powerful human Hsp70 disaggregase activity that efficiently disassembles amyloid fibrils and points to crucial yet undefined biology underlying amyloid-based diseases
How managers can build trust in strategic alliances: a meta-analysis on the central trust-building mechanisms
Trust is an important driver of superior alliance performance. Alliance managers are influential in this regard because trust requires active involvement, commitment and the dedicated support of the key actors involved in the strategic alliance. Despite the importance of trust for explaining alliance performance, little effort has been made to systematically investigate the mechanisms that managers can use to purposefully create trust in strategic alliances. We use Parkhe’s (1998b) theoretical framework to derive nine hypotheses that distinguish between process-based, characteristic-based and institutional-based trust-building mechanisms. Our meta-analysis of 64 empirical studies shows that trust is strongly related to alliance performance. Process-based mechanisms are more important for building trust than characteristic- and institutional-based mechanisms. The effects of prior ties and asset specificity are not as strong as expected and the impact of safeguards on trust is not well understood. Overall, theoretical trust research has outpaced empirical research by far and promising opportunities for future empirical research exist
Dynamic and volumetric variables reliably predict fluid responsiveness in a porcine model with pleural effusion
Background: The ability of stroke volume variation (SVV), pulse pressure variation (PPV) and global end-diastolic volume (GEDV) for prediction of fluid responsiveness in presence of pleural effusion is unknown. The aim of the present study was to challenge the ability of SVV, PPV and GEDV to predict fluid responsiveness in a porcine model with pleural effusions.
Methods: Pigs were studied at baseline and after fluid loading with 8 ml kg−1 6% hydroxyethyl starch. After withdrawal of 8 ml kg−1 blood and induction of pleural effusion up to 50 ml kg−1 on either side, measurements at baseline and after fluid loading were repeated. Cardiac output, stroke volume, central venous pressure (CVP) and pulmonary occlusion pressure (PAOP) were obtained by pulmonary thermodilution, whereas GEDV was determined by transpulmonary thermodilution. SVV and PPV were monitored continuously by pulse contour analysis.
Results: Pleural effusion was associated with significant changes in lung compliance, peak airway pressure and stroke volume in both responders and non-responders. At baseline, SVV, PPV and GEDV reliably predicted fluid responsiveness (area under the curve 0.85 (p<0.001), 0.88 (p<0.001), 0.77 (p = 0.007). After induction of pleural effusion the ability of SVV, PPV and GEDV to predict fluid responsiveness was well preserved and also PAOP was predictive. Threshold values for SVV and PPV increased in presence of pleural effusion.
Conclusions: In this porcine model, bilateral pleural effusion did not affect the ability of SVV, PPV and GEDV to predict fluid responsiveness
- …