17 research outputs found

    Uterine miR-877-3p and let-7a-5p are increased during simulated menstruation in a mouse model

    Get PDF
    Heavy periods are common and debilitating, but we do not fully understand how they are caused. Increased understanding of menstrual bleeding could result in new treatments for problematic periods. Low oxygen levels are present in the womb lining during a period. These low oxygen levels help trigger the repair process required to stop menstrual bleeding. MicroRNAs (miRNAs) are small molecules that can affect cell function, and some are regulated by oxygen levels. We examined whether such miRNAs were present in the womb lining during a period. To overcome the variability present in humans, we studied the womb of mice given hormones to mimic the human menstrual cycle. We revealed that two miRNAs known to be regulated by oxygen levels were increased in the womb during menstruation. These miRNAs may help regulate menstrual blood loss and merit further study as a potential target for future treatments for heavy periods

    Pre-clinical models to study abnormal uterine bleeding (AUB)

    Get PDF
    Abnormal Uterine Bleeding (AUB) is a common debilitating condition that significantly reduces quality of life of women across the reproductive age span. AUB creates significant morbidity, medical, social, and economic problems for women, their families, workplace, and health services. Despite the profoundly negative effects of AUB on public health, advancement in understanding the pathophysiology of AUB and the discovery of novel effective therapies is slow due to lack of reliable pre-clinical models. This review discusses currently available laboratory-based pre-clinical scientific models and how they are used to study AUB. Human and animal in vitro, ex vivo, and in vivo models will be described along with advantages and limitations of each method

    In silico analysis identifies a novel role for androgens in the regulation of human endometrial apoptosis

    Get PDF
    CONTEXT: The endometrium is a multicellular, steroid-responsive tissue that undergoes dynamic remodeling every menstrual cycle in preparation for implantation and, in absence of pregnancy, menstruation. Androgen receptors are present in the endometrium. OBJECTIVE: The objective of the study was to investigate the impact of androgens on human endometrial stromal cells (hESC). DESIGN: Bioinformatics was used to identify an androgen-regulated gene set and processes associated with their function. Regulation of target genes and impact of androgens on cell function were validated using primary hESC. SETTING: The study was conducted at the University Research Institute. PATIENTS: Endometrium was collected from women with regular menses; tissues were used for recovery of cells, total mRNA, or protein and for immunohistochemistry. RESULTS: A new endometrial androgen target gene set (n = 15) was identified. Bioinformatics revealed 12 of these genes interacted in one pathway and identified an association with control of cell survival. Dynamic androgen-dependent changes in expression of the gene set were detected in hESC with nine significantly down-regulated at 2 and/or 8 h. Treatment of hESC with dihydrotestosterone reduced staurosporine-induced apoptosis and cell migration/proliferation. CONCLUSIONS: Rigorous in silico analysis resulted in identification of a group of androgen-regulated genes expressed in human endometrium. Pathway analysis and functional assays suggest androgen-dependent changes in gene expression may have a significant impact on stromal cell proliferation, migration, and survival. These data provide the platform for further studies on the role of circulatory or local androgens in the regulation of endometrial function and identify androgens as candidates in the pathogenesis of common endometrial disorders including polycystic ovarian syndrome, cancer, and endometriosis

    The COVID-19 pandemic and the menstrual cycle: research gaps and opportunities

    Get PDF
    International audienceSince the beginning of the COVID-19 pandemic, discussions on social media and blogs have indicated that women have experienced menstrual changes, including altered menstrual duration, frequency, regularity, and volume (heavier bleeding and clotting), increased dysmenorrhea, and worsened premenstrual syndrome. There have been a small number of scientific studies of variable quality reporting on menstrual cycle features during the pandemic, but it is still unclear whether apparent changes are due to COVID-19 infection/illness itself, or other pandemic-related factors like increased psychological stress and changes in health behaviours. It is also unclear to what degree current findings are explained by reporting bias, recall bias, selection bias and confounding factors. Further research is urgently needed. We provide a list of outstanding research questions and potential approaches to address them. Findings can inform policies to mitigate against gender inequalities in health and society, allowing us to build back better post-COVID

    Menstrual physiology: implications for endometrial pathology and beyond.

    Get PDF
    BACKGROUND: Each month the endometrium becomes inflamed, and the luminal portion is shed during menstruation. The subsequent repair is remarkable, allowing implantation to occur if fertilization takes place. Aberrations in menstrual physiology can lead to common gynaecological conditions, such as heavy or prolonged bleeding. Increased knowledge of the processes involved in menstrual physiology may also have translational benefits at other tissue sites. METHODS: Pubmed and Cochrane databases were searched for all original and review articles published in English until April 2015. Search terms included ‘endometrium’, ‘menstruation’, ‘endometrial repair’, ‘endometrial regeneration’ ‘angiogenesis’, ‘inflammation’ and ‘heavy menstrual bleeding’ or ‘menorrhagia’. RESULTS: Menstruation occurs naturally in very few species. Human menstruation is thought to occur as a consequence of preimplantation decidualization, conferring embryo selectivity and the ability to adapt to optimize function. We highlight how current and future study of endometrial inflammation, vascular changes and repair/regeneration will allow us to identify new therapeutic targets for common gynaecological disorders. In addition, we describe how increased knowledge of this endometrial physiology will have many translational applications at other tissue sites. We highlight the clinical applications of what we know, the key questions that remain and the scientific and medical possibilities for the future. CONCLUSIONS: The study of menstruation, in both normal and abnormal scenarios, is essential for the production of novel, acceptable medical treatments for common gynaecological complaints. Furthermore, collaboration and communication with specialists in other fields could significantly advance the therapeutic potential of this dynamic tissue

    Menstruation: science and society

    Get PDF
    © 2020 The Authors Women's health concerns are generally underrepresented in basic and translational research, but reproductive health in particular has been hampered by a lack of understanding of basic uterine and menstrual physiology. Menstrual health is an integral part of overall health because between menarche and menopause, most women menstruate. Yet for tens of millions of women around the world, menstruation regularly and often catastrophically disrupts their physical, mental, and social well-being. Enhancing our understanding of the underlying phenomena involved in menstruation, abnormal uterine bleeding, and other menstruation-related disorders will move us closer to the goal of personalized care. Furthermore, a deeper mechanistic understanding of menstruation—a fast, scarless healing process in healthy individuals—will likely yield insights into a myriad of other diseases involving regulation of vascular function locally and systemically. We also recognize that many women now delay pregnancy and that there is an increasing desire for fertility and uterine preservation. In September 2018, the Gynecologic Health and Disease Branch of the Eunice Kennedy Shriver National Institute of Child Health and Human Development convened a 2-day meeting, “Menstruation: Science and Society” with an aim to “identify gaps and opportunities in menstruation science and to raise awareness of the need for more research in this field.” Experts in fields ranging from the evolutionary role of menstruation to basic endometrial biology (including omic analysis of the endometrium, stem cells and tissue engineering of the endometrium, endometrial microbiome, and abnormal uterine bleeding and fibroids) and translational medicine (imaging and sampling modalities, patient-focused analysis of menstrual disorders including abnormal uterine bleeding, smart technologies or applications and mobile health platforms) to societal challenges in health literacy and dissemination frameworks across different economic and cultural landscapes shared current state-of-the-art and future vision, incorporating the patient voice at the launch of the meeting. Here, we provide an enhanced meeting report with extensive up-to-date (as of submission) context, capturing the spectrum from how the basic processes of menstruation commence in response to progesterone withdrawal, through the role of tissue-resident and circulating stem and progenitor cells in monthly regeneration—and current gaps in knowledge on how dysregulation leads to abnormal uterine bleeding and other menstruation-related disorders such as adenomyosis, endometriosis, and fibroids—to the clinical challenges in diagnostics, treatment, and patient and societal education. We conclude with an overview of how the global agenda concerning menstruation, and specifically menstrual health and hygiene, are gaining momentum, ranging from increasing investment in addressing menstruation-related barriers facing girls in schools in low- to middle-income countries to the more recent “menstrual equity” and “period poverty” movements spreading across high-income countries
    corecore