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25 ABSTRACT

26 The endometrium is a multicellular tissue that is exquisitely responsive to the ovarian hormones. The 

27 local mechanisms of endometrial regulation to ensure optimal function are less well characterised. 

28 Transient physiological hypoxia has been proposed as a critical regulator of endometrial function. 

29 Herein, we review the literature on hypoxia in the non-pregnant endometrium. We discuss the pros 

30 and cons of animal models, human laboratory studies and novel in vivo imaging for the study of 

31 endometrial hypoxia. These research tools provide mounting evidence of a transient hypoxic 

32 episode in the menstrual endometrium and suggest that endometrial hypoxia may be present at the 

33 time of implantation. This local hypoxia may modify the inflammatory environment, influence 

34 vascular remodelling and modulate endometrial proliferation to optimise endometrial function. 

35 Finally, we review current knowledge of the impact of this hypoxia on endometrial pathologies, with 

36 a focus on abnormal uterine bleeding. Throughout the manuscript areas for future research are 

37 highlighted with the aim of concentrating research efforts to maximise future benefits for women 

38 and society. 
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65 INTRODUCTION

66 The human endometrium is a heterogeneous and dynamic tissue that undergoes cyclical breakdown 

67 and repair/regeneration more than 400 times during the female reproductive lifespan (Short, 1976; 

68 Critchley et al., 2020). This occurs each month without scarring or loss of function. However, the 

69 regulation and local mechanisms of this endometrial breakdown and repair remain elusive. In 

70 particular, our knowledge of the contribution of local endometrial hypoxia to this process is in its 

71 infancy. The presence of hypoxia, usually defined as a partial oxygen pressure below 10 mmHg, is 

72 not an uncommon phenomenon in human physiology, e.g. bone marrow and intestinal mucosa 

73 (Suda, Takubo & Semenza, 2011; Zheng, Kelly & Colgan, 2015). Its presence in the menstrual 

74 endometrium has been proposed following progesterone withdrawal and intense vasoconstriction 

75 of the specialised spiral arterioles (Markee, 1940). Unravelling the role of hypoxia in the 

76 endometrium has the potential to improve our understanding of menstrual and implantation 

77 disorders and reveal novel therapeutic strategies for those suffering from these common, 

78 devastating conditions. 

79

80

81 ENDOMETRIAL HISTOLOGY AND OVARIAN HORMONE 

82 REGULATION

83 Histologically, the endometrium can be divided into the functional and basal layer (Noyes, Hertig & 

84 Rock, 1950). The functional layer occupies the upper two thirds of the endometrium and is 

85 composed of stroma and glands. This layer undergoes constant remodelling throughout the 

86 menstrual cycle and is shed during menstruation. The basal layer, adjacent to the myometrium, 

87 comprises the lower third of the endometrium. 
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88

89 Oestradiol is the dominant hormone in the first half of the menstrual cycle, during the proliferative 

90 phase. It acts via the oestrogen receptor (ER), which has two structurally related subtypes, ERα and 

91 ERβ (Lessey et al., 1988; Critchley et al., 2002). After ovulation, levels of oestradiol decline and the 

92 corpus luteum increases its progesterone production, prompting endometrial differentiation and 

93 decidualisation. This process, driven by cAMP signalling, reshapes the stromal compartment in order 

94 to keep the endometrium receptive for future implantation (Dunn, Kelly & Critchley, 2003). In 

95 contrast with non-menstruating species, where implantation of an embryo is required to trigger 

96 decidualisation (Brasted et al., 2003), the human endometrium spontaneously decidualises with 

97 endometrial stromal cells in close proximity to spiral arterioles initiating their own transformation 

98 (Gellersen & Brosens, 2014). They morphologically transition from fibroblast-like cells to rounded 

99 epithelioid-like cells (Dunn, Kelly & Critchley, 2003).

100

101

102 ENDOMETRIAL BREAKDOWN AND REGENERATION

103 In the absence of implantation, the corpus luteum regresses causing significant progesterone 

104 withdrawal (Corker et al., 1976; Maybin, Hirani, et al., 2011). This decrease in progesterone levels 

105 triggers a cascade of local physiological inflammatory events that initiate menstruation. 

106 Progesterone withdrawal leads to the induction of the transcription factor NFκB, which up-regulates 

107 the expression of pro-inflammatory cytokines (IL-6, TNF) and chemokines (CCL2, CXCL8)(King, 

108 Critchley & Kelly, 2001). In addition, this fall in progesterone levels increases endometrial 

109 cyclooxygenase 2 (COX-2), responsible for the synthesis of prostaglandins (PG)(Critchley et al., 1999). 

110 Increased levels of these inflammatory mediators drive the recruitment of myeloid leukocytes, 

111 activation of matrix metalloproteinases (MMPs) and the shedding of the upper endometrial layers 

112 (Critchley et al., 2001; Kelly, King & Critchley, 2001). Hypoxia has been identified in the endometrium 
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113 following progesterone withdrawal (Fan et al., 2008; Cousins, Murray, et al., 2016; Maybin et al., 

114 2018) and may be due to vasoconstriction of the endometrial vessels. PGF2α and endothelin-1 (ET-1) 

115 are two endometrial factors with known vasoconstrictive properties that are present following 

116 progesterone withdrawal (Baird et al., 1996; Marsh et al., 1997). Vasoconstriction of specialised 

117 endometrial spiral arterioles may limit blood loss during menstruation. The subsequent tissue 

118 hypoxia does not appear to be necessary for endometrial breakdown but may have an important 

119 role in endometrial repair/regeneration (Maybin et al., 2018; Chen et al., 2020).

120

121 Shedding of the functional endometrial layer necessitates repair of the denuded endometrial surface 

122 and regeneration of endometrial tissue. This takes place when oestradiol and progesterone levels 

123 are low but local glucocorticoid action may be increased (McDonald et al., 2006; Kaitu’u-Lino, 

124 Morison & Salamonsen, 2007a; Rae et al., 2009). Evidence from mouse models and human tissue 

125 studies suggest that hypoxia is required for physiological endometrial repair (Fan et al., 2008; 

126 Maybin et al., 2018). The processes involved are likely to be similar to those of wound healing, 

127 involving haemostasis, inflammation, proliferation and remodelling (Velnar, Bailey & Smrkolj, 2009; 

128 Mutsaers et al., 2015).

129

130

131 DETECTION OF HYPOXIA THROUGHOUT THE 

132 MENSTRUAL CYCLE

133 The first suggestion that hypoxia was present at menses derived from findings in a primate model in 

134 1940 (Markee, 1940). Transplantation of endometrial explants to the Rhesus macaque eye allowed 

135 direct observation of intense vasoconstriction of spiral arterioles and focal bleeding following 
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136 progesterone withdrawal. Since then, the use and refinement of animal models for the study of 

137 menstrual physiology and endometrial hypoxia has become more common.

138

139 In vivo animal models 

140 Menstruation is restricted to humans and few other species. These include higher order primates 

141 (baboons, Rhesus macaques), the elephant shrew (Van der Horst & Gillman, 1940), certain bats 

142 (Hamlett, 1934; Rasweiler & de Bonilla, 1992; Zhang et al., 2007) and the spiny mouse (Bellofiore et 

143 al., 2017). The majority of menstrual studies have been carried out in rodents and non-human 

144 primates, including the Rhesus macaque (Brenner & Slayden, 2012). 

145

146 Rodent models

147 Despite physiological differences between mice and humans (e.g. a shorter length of cycle and lack 

148 of spontaneous decidualisation) mouse models replicate the events of human menstruation and 

149 decidualisation well (Wang et al., 2013; Cousins, Kirkwood, et al., 2016; Armstrong et al., 2017). The 

150 feasible management of large experimental groups, short breeding times and availability of 

151 laboratory antibodies/reagents provide advantages over macaque models. Mouse models also offer 

152 the possibility of genetic, environmental and pharmacological manipulation of hypoxia (see Role of 

153 hypoxia throughout the menstrual cycle below). Technically, euthanasia by carbon dioxide (CO2) 

154 inhalation can impact tissue hypoxia and may distort results. Hence, cervical dislocation is the 

155 recommended euthanasia method for these studies. Great care must be taken to handle, process 

156 and fix tissue rapidly to capture the physiological events of menstruation.

157
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158 The mouse model of simulated menstruation

159 The menses-like model was first described in 1984 (Finn & Pope, 1984) and further optimised in the 

160 2000’s (Brasted et al., 2003). Since then, it has been the most popular model to investigate the 

161 dynamics of endometrial repair (Fan et al., 2008; Evans, Kaitu’u-Lino & Salamonsen, 2011; Cousins et 

162 al., 2014; Maybin et al., 2018; Chen et al., 2020) (Fig. 1). Mice are ovariectomised and supplemented 

163 with exogenous oestradiol and progesterone to mimic the human hormonal endometrial 

164 environment. They require artificial induction of decidualisation, via a transcervical or surgical 

165 intrauterine injection of oil. Once decidualisation has taken place, progesterone withdrawal leads to 

166 active bleeding in the mouse uterus and subsequent repair (Fig. 1a). Alternatively, simulation of 

167 menses can be achieved by inducing pseudopregnancy (Fig. 1b). In this model, female mice are 

168 mated with vasectomized males to mimic fertilisation events. Progesterone withdrawal occurs 

169 naturally or is induced by ovariectomy or administration of a progesterone antagonist (Rudolph et 

170 al., 2012).

171

172 The first work to describe the presence of hypoxia during endometrial breakdown and repair in the 

173 mouse utilised the ‘pseudopregnancy’ model variant (Fan et al., 2008). Pimonidazole is a hypoxic 

174 marker that, when oxygen partial pressures are below 10 mmHg, forms protein adducts which can 

175 be visualized using specific monoclonal antibodies. Due to its chemical stability, pimonidazole is 

176 considered one of the most reliable means of tissue oxygen level detection, even when it is 

177 temporally and spatially transient. Fan et al. found the endometrial area undergoing regeneration to 

178 be hypoxic and that this hypoxia decreased and eventually disappeared with endometrial 

179 reepithelialisation (Fan et al., 2008). Subsequent confirmation of the presence of menstrual hypoxia 

180 was found in the ‘exogenous hormone’ model of simulated menses (Cousins, Murray, et al., 2016; 

181 Maybin et al., 2018; Chen et al., 2020). Using pimonidazole, hypoxia was detected during bleeding 

182 and later confined to areas undergoing active repair. Hypoxia may also be present in the 

183 endometrium at the time of implantation. As the uterine epithelium contains no blood vessels 
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184 during initial embryo contact, it has been suggested that the onset of implantation occurs in a 

185 hypoxic environment (Daikoku et al., 2003). The detection of pimonidazole adducts in the area of 

186 implantation in mice reinforces this hypothesis (Pringle et al., 2007).

187

188 Another method to determine tissue hypoxia is detection of the oxygen-sensing transcription factor 

189 hypoxia inducible factor (HIF). HIFs have a key role in the cellular response to oxygen and are 

190 heterodimers composed of two subunits: a constitutively expressed beta subunit (HIF-1β) and an O2-

191 sensitive alpha subunit (Semenza, 2000). There are three known α subunits: HIF-1α, HIF-2α, and HIF-

192 3α. HIF-1α and HIF-2α are the most common alpha isoforms and present overlapping but distinct 

193 target gene specificities (Mole et al., 2009). HIF-3α is structurally different from the other isoforms 

194 and is the least characterized (Pasanen et al., 2010). Along with promoting genes related to nitrogen 

195 metabolism and immune response, HIF-3α has the ability to inhibit HIF-1α/2α action (Zhang et al., 

196 2014).

197

198 The regulation of HIF takes place predominantly at the protein level. In normoxia, prolyl hydroxylase 

199 domain enzymes (PHDs) hydroxylate specific residues within the alpha subunit, leading to its 

200 ubiquitination and subsequent degradation via the proteasome (Salceda & Caro, 1997). In hypoxia 

201 these PHDs are inhibited, resulting in HIF-α stabilization. HIF-α translocates to the nucleus, dimerizes 

202 with HIF-1β and binds to hypoxia-response elements (HREs) to enhance transcription of a plethora of 

203 genes involved in energy metabolism, angiogenesis, tissue remodelling and inflammatory responses 

204 (Semenza, 2012).

205

206 The presence of nuclear HIF-1α protein is therefore indicative of active HIF-1 and consistent with 

207 tissue hypoxia. Using this approach, HIF-1α has been detected during menstruation in both the 

208 exogenous hormone (Maybin et al., 2018; Chen et al., 2020) and pseudopregnancy menstruation 

209 models (Chen et al., 2015), decreasing during endometrial regeneration. Examination of HIF-1 and 
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210 HIF-2 in the mouse uterus during pre-implantation (day 4) and decidualisation (day 5-8) of 

211 pregnancy, revealed HIF-1 was present in the luminal epithelium prior to implantation and 

212 throughout the epithelium and stroma during decidualisation and implantation (Daikoku et al., 

213 2003). HIF-2 was seen in the stroma on day 4 and limited to cells surrounding the blastocyst on day 

214 5. The authors suggested that HIF-1 was involved in maintaining oxygen homeostasis and that HIF-2 

215 was driving the angiogenesis necessary for successful implantation.

216

217 Various concerns have been raised about using HIF as a hypoxic surrogate marker. Transient hypoxic 

218 events can be too brief to stabilise HIF for immunohistochemical detection (Wang et al., 1995). 

219 Antibody unreliability is an added factor, which is compounded by the fact that tissue collection and 

220 fixation can also affect HIF detection (Zhang & Salamonsen, 2002). Furthermore, HIF stabilisation can 

221 be induced by NF-κB-driven cytokine production in a non-hypoxic dependent manner and hypoxia 

222 can exert downstream effects independently of HIF signalling (Lin & Simon, 2016).

223 Alongside detection of pimonidazole and HIF, hypoxia-inducible factor downstream targets may 

224 indicate a hypoxic response in the mouse menstrual endometrium. HIF-1α-mediated induction of 

225 the angiogenic factors vascular endothelial growth factor (VEGF) and the chemokine receptor CXCR4 

226 was increased during menstruation and endometrial repair (Fan et al., 2008; Chen et al., 2015; 

227 Cousins, Murray, et al., 2016; Maybin et al., 2018).

228

229 Xenograft mouse model

230 The xenograft mouse model provides an alternative model for study of menstrual physiology and 

231 pathology (extensively reviewed in (Kuokkanen, Zhu & Pollard, 2017)). Human functional 

232 endometrium is transplanted into immunodeficient mice (Fig. 1c). This is usually collected during the 

233 proliferative phase and can be transplanted as (i) small fragments (1-2 mm3) of endometrial tissue 
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234 (Guo et al., 2011; Coudyzer et al., 2013) or (ii) dissociated endometrial cells from epithelial and 

235 stromal fractions that are mixed before implantation (Masuda et al., 2007; Polotsky et al., 2009). 

236 The recipient mice are selected to limit xenograft tissue rejection, but the immunodeficient strain 

237 used can vary. The most commonly used in xenograft menstruation models is the severe combined 

238 immunodeficiency (SCID) mouse, which has T and B cell deficiencies (Gaide Chevronnay et al., 2009; 

239 Guo et al., 2011; Coudyzer et al., 2013). The best engraftment results are achieved with the non-

240 obese diabetic (NOD)/SCID/γcnull  mice (NOG), which also have defective NK cell activity (Matsuura-

241 Sawada et al., 2005; Masuda et al., 2007).  

242

243 Generally, the patches of endometrial tissue are placed subcutaneously in mice (Guo et al., 2011; 

244 Coudyzer et al., 2013) with a survival time of 4 weeks, whereas the dissociated endometrial cells are 

245 implanted below the kidney capsule and survive up to 10 weeks (Masuda et al., 2007). This latter 

246 mode of implantation allows extension of the duration of experiments, making this the method of 

247 choice for studies of the proliferation kinetics of the endometrium after pharmacological treatments 

248 (Polotsky et al., 2009).

249

250 Xenograft menstruation studies mainly focus on endometrial regeneration and the role of ovarian 

251 steroids in orchestrating the process (Gaide Chevronnay et al., 2009; Guo et al., 2011; Coudyzer et 

252 al., 2015) and use the endometrial fragments model variant. To date, this mouse model has only 

253 been employed once to study the presence of hypoxia during menstruation (Coudyzer et al., 2013). 

254 In 2013, Coudyzer et al. subcutaneously implanted endometrial patches on SCID female mice and 

255 tested for signs of hypoxia in the resulting xenograft using several methods. Firstly, they directly 

256 measured the local partial oxygen pressure (pO2) using electron paramagnetic resonance and 

257 OxyLite fluorescent probes. They also studied the presence of pimonidazole staining and HIF-1α 

258 using immunohistochemistry (IHC). The authors did not detect hypoxia during endometrial 

259 breakdown or repair using any of these methods. These results contrast with findings in the mouse 
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260 model of simulated menses and may be partially explained by the xenograft model itself. 

261 Endometrial tissue architecture and vasculature is severely compromised following transplantation 

262 and may impair vasoconstriction and prevent endometrial hypoxia. Moreover, endometrial 

263 breakdown and repair are considered inflammatory events, as they involve pro-inflammatory 

264 cytokine production and myeloid leukocyte recruitment (Finn, 1986). Therefore, the necessary 

265 immunosuppressed state of the recipient mice may alter physiological menstrual endometrial 

266 events. The SCID model aims to suppress T and B-cell mediated transplant/xenograft rejection 

267 without substantially affecting the innate immune response and may be more relevant than other 

268 immunocompromised recipient mice (Guo et al., 2011; Donoghue et al., 2012).

269

270 Spiny mouse

271 The common spiny mouse (Acomys cahirinus) is, to date, the only known rodent to display 

272 spontaneous decidualisation and natural menstruation (Bellofiore et al., 2017, 2018).

273 Although anatomically different, the spiny mouse uterus has physiological similarities to the human 

274 endometrium. For example, the spiny mouse displays spiral arteriole remodelling in the 

275 perimenstrual phase (Bellofiore et al., 2018). In addition, endometrial decidualisation is tightly 

276 controlled, not compromising the structural integrity of the endometrial glands or the myometrium, 

277 as observed in other mouse models (Bellofiore et al., 2018). Hypoxia has not been examined in this 

278 rodent to date and these studies are awaited with interest.

279

280 Macaque models

281 Macaques have morphologically similar uteri to humans, a similar length of menstrual cycle and they 

282 display spontaneous decidualisation (Brenner & Slayden, 2012). Macaques also experience 

283 menstrual abnormalities (e.g. heavy menstrual bleeding (HMB)) and can be fitted with tampons, 

284 hence they are exceptional candidates for evaluating therapies for menstrual disorders (reviewed in 
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285 (Brenner & Slayden, 2012)). Despite menstruating naturally, macaques are routinely ovariectomized 

286 and treated with oestradiol and progesterone to create artificial menstrual cycles and enable 

287 accurate timing of endometrial sampling. However, the need for larger experimental groups, longer 

288 experimental times and the increased cost of these experiments has meant many researchers are 

289 now preferentially using rodent models to study menstrual physiology.

290

291 As previously mentioned, the first indication of endometrial tissue hypoxia was observed in 

292 endometrial explants transplanted to the eye of rhesus macaques in the 1940s (Markee, 1940). 

293 Rather than hypoxia, Markee observed pulses of intense vasoconstriction in the spiral arterioles that 

294 he associated with localised hypoxic ischemia. This hypothesis was later supported by the detection 

295 and increased expression of HIF-1α in the functional layer of the macaque endometrium during 

296 menstruation (Brenner & Slayden, 2012), consistent with the presence of endometrial hypoxia. 

297

298 Ex vivo human endometrial studies 

299 HIF-1α protein has been identified, both by western blot and IHC , in human endometrial biopsies 

300 collected during the late secretory and menstrual phases (Critchley et al., 2006; Maybin et al., 2018). 

301 HIF-1α staining was localised in the glandular and stromal cells in the functional endometrium, 

302 whereas in the basal layer HIF-1α staining was restricted to the glands.

303 In contrast, HIF-2α is present exclusively during the early-mid secretory phase (Maybin et al., 2018). 

304 Downstream targets of HIF, such as VEGF and carbonic anhydrase IX (CA-IX) have also been shown to 

305 be increased during the menstrual and proliferative phases  (Stephen Charnock-Jones et al., 1993; 

306 Sharkey et al., 2000; Punyadeera, 2006; Maybin, Hirani, et al., 2011) .

307
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308 In vivo human endometrial studies

309 Detection of human endometrial hypoxia in vivo has been largely via measurements of perfusion, 

310 initially investigated using thermal heat dissipation (Prill & Götz, 1961) and later by a Xenon-133 

311 clearance technique (Fraser et al., 1987) (Fig. 2).  Both methods are invasive and results were 

312 conflicting as suffering from variable calibration and poor spatial and temporal resolution 

313 respectively.  The introduction of Doppler ultrasound allowed perfusion measurements in individual 

314 spiral arterioles (Kupesic & Kurjak, 1993), but this showed an increase in flow the day before 

315 ovulation, in contrast with the 133Xe clearance study which found a fall at this time. Laser Doppler 

316 fluxmetry was able to assess endometrial perfusion using a fibre optic probe (Gannon, Carati & 

317 Verco, 1997), finding blood flow peaks in the early proliferative and early secretory phase, but 

318 spatial resolution was limited.  The more sensitive three-dimensional power Doppler angiography 

319 (3D-PDA) was also used in spiral arterioles (Raine-Fenning, 2004) and revealed a significant pre-

320 ovulatory peak in perfusion, followed by a post-ovulatory fall and gradual increase through early to 

321 mid-secretory phases.  In general, there has been little consensus regarding changes in endometrial 

322 blood flow over the menstrual cycle and how to measure such changes. Magnetic resonance imaging 

323 (MRI) methods may now offer a better alternative, although there has been little work on the 

324 application of these techniques to detect endometrial hypoxia.  

325

326 To our knowledge, functional investigation of the normal endometrium has been limited to MR 

327 spectroscopy (Sarac et al., 2004; Celik et al., 2005).  This technique detects the presence of specific 

328 metabolites in the body by examining the resonant frequencies of the hydrogen protons within 

329 them.  In particular, lactate is a product of anaerobic respiration (and therefore a marker of hypoxia) 

330 and has been detected in normal secretory and proliferative endometrium (Sarac et al., 2004; Celik 

331 et al., 2005).  Although lactate is arguably a more direct marker of hypoxia than measurement of 
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332 perfusion, analysis and acquisition of spectroscopy data is technically challenging (Lange et al., 2006) 

333 and spatial resolution tends to be poor.

334

335 Dynamic contrast-enhanced (DCE) MRI is a technique that can detect hypoxia indirectly by 

336 measuring perfusion using an exogenous gadolinium-based contrast agent (CA) (Sourbron, 2010).  

337 Passage of the CA through the tissue can be modelled to allow perfusion to be estimated as part of a 

338 model-fitting process (Sourbron & Buckley, 2012).  The technique has been applied in the normal 

339 endometrium (Majd et al., 2017) but showed no differences between the secretory and proliferative 

340 phases.  The advantage of DCE-MRI for hypoxia imaging is its good spatial resolution, but imaging 

341 and analysis can be complex (Brix et al., 2004, 2009; Michaely et al., 2008) and there is no gold 

342 standard for validation of the technique. Use of DCE-MRI to detect a reduction in perfusion related 

343 to hypoxia in the menstrual cycle would require a specialised imaging protocol and robust data 

344 analysis using a complex model, including estimation of parameter uncertainties.

345

346 Other existing MRI techniques could be applied to measure endometrial hypoxia (Fig. 2). T2* is a 

347 characteristic tissue relaxation time that depends on inhomogeneities in the main magnetic field 

348 produced by the scanner as well as rapidly-changing inhomogeneities induced by the presence of 

349 other nearby molecules. Detection of a reduction in T2* is commonly assumed to be due to the 

350 presence of deoxyhaemoglobin and therefore tissue hypoxia.  This technique has been used in the 

351 myometrium (Kido et al., 2007; Imaoka et al., 2012) and has the high spatial resolution necessary to 

352 investigate the endometrium. T2* can change for a number of other reasons, (e.g. local haematocrit, 

353 hemosiderin, calcification and tissue iron deposition) therefore changes should be interpreted with 

354 caution.  Similarly, a non-invasive perfusion technique known as arterial spin labelling (ASL) (Ferré et 

355 al., 2013) could be extended from existing work in the myometrium (Takahashi et al., 2016) to the 

356 endometrium, though it can be technically challenging.  Finally, the extensive work on hypoxia 

357 measurements in cancer (Horsman et al., 2012) could be applied in the endometrium.  Oxygen-
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358 enhanced (OE) MRI (O’Connor, Robinson & Waterton, 2019) allows a change in the tissue relaxation 

359 time T1 as a result of the patient breathing 100% oxygen through a mask to be related to the oxygen 

360 status of the tissue (O’Connor et al., 2016).  These minimally invasive MRI techniques may provide 

361 key information on the presence of human endometrial hypoxia throughout the menstrual cycle, 

362 with potential diagnostic and therapeutic benefits for women.

363

364

365 ROLE OF HYPOXIA THROUGHOUT THE MENSTRUAL 

366 CYCLE

367 Mice have the experimental advantage of genetic or pharmacological alteration to assess the role of 

368 hypoxia in endometrial function. HIF-1α heterozygote mice have revealed that HIF-1α is required for 

369 normal menstruation, and decreased HIF-1 delays endometrial repair (Maybin et al., 2018). 

370 Pharmacological stabilisation and inhibition of HIF-1α in mice has confirmed this role (Chen et al., 

371 2015; Maybin et al., 2018). Mice placed in hyperoxic chambers (75% O2) during menses had reduced 

372 local endometrial hypoxia at menstruation and delayed endometrial repair (Maybin et al., 2018). 

373 HIF-2α deficiency restricted to uterine stromal cells in a mouse implantation model revealed a key 

374 role in decidualisation, endometrial receptivity, embryonic implantation and survival (Matsumoto et 

375 al., 2018). 

376

377 This emerging evidence for the presence and important role of hypoxia and HIF in endometrial 

378 function presents an exciting and developing research area (Fig. 3). The effects of hypoxia on the 

379 important menstrual processes of inflammation, proliferation and tissue remodelling remains to be 

380 elucidated.

381
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382 Impact of hypoxia on inflammation

383 Inflammation is a key event during implantation, at menstruation and the subsequent endometrial 

384 repair. There is a peri-menstrual influx of leukocytes into the endometrium, in particular neutrophils 

385 and macrophages (Armstrong et al., 2017).  Interactions between the inflammatory response and 

386 hypoxia are well described at other tissue sites (Cramer et al., 2003; Taylor, 2008; Taylor et al., 2016) 

387 but the impact of hypoxia on the endometrial inflammatory response is less well characterised.  

388

389 Impact on neutrophils

390 Neutrophils comprise up to 15% of the total endometrial cell numbers during menstruation 

391 (Poropatich, Rojas & Silverberg, 1987; Salamonsen & Lathbury, 2000). Their influx is tightly 

392 regulated, displaying a rapid, short lasting induction, which coincides with the upregulation of 

393 chemokines and cytokines. This temporal dynamic has been observed in both the mouse model of 

394 simulated menses and in human endometrial samples (Armstrong et al., 2017). Neutrophils are 

395 important mediators of endometrial breakdown, which has been confirmed by their depletion in the 

396 mouse model of menstruation (Kaitu’u-Lino, Morison & Salamonsen, 2007b). However, the 

397 depleting agent used in this study also affects the monocytic cell lineage. Activated neutrophils 

398 release enzymes such as neutrophil elastase and cathepsin G. These enzymes activate MMPs 

399 produced by endometrial stromal cells and cause degradation of the extracellular matrix 

400 (Salamonsen & Lathbury, 2000). In airway inflammation, hypoxia boosts neutrophil degranulation 

401 and protease release (Hoenderdos et al., 2016). It would be informative to determine whether 

402 hypoxia has similar effects in the endometrial environment during menses.  

403

404 Neutrophils also produce reactive oxygen species (ROS) that might participate in endometrial 

405 breakdown. The potential role of ROS in menstruation has been reported (Sugino et al., 1996), 

406 suggesting that free oxygen radicals may contribute to endometrial shedding by causing tissue 
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407 damage. Indeed, the inhibition of ROS generation in the mouse model of simulated menstruation 

408 has been shown to abrogate endometrial breakdown (Wu et al., 2014). 

409

410 Neutrophil depletion in mouse models also affected endometrial regeneration (Kaitu’u-Lino, 

411 Morison & Salamonsen, 2007b). Little is known about the impact of hypoxia on neutrophils during 

412 endometrial repair. The concept that hypoxia has an effect on neutrophil number and function is 

413 derived from studies of tumour biology.  In a mouse model of endometrial carcinoma there was 

414 spatiotemporal correlation between hypoxia and neutrophil infiltration within the tumour (Blaisdell 

415 et al., 2015). Accumulation of pimonidazole and nuclear staining of HIF-1α was detected slightly 

416 prior to neutrophil infiltration. These results are consistent with those observed in the mouse model 

417 of simulated menses, where pharmacological inhibition of HIF-1α decreased the number of 

418 endometrial neutrophils present during active bleeding (Maybin et al., 2018). The role of hypoxia in 

419 promoting neutrophil recruitment in endometrial carcinoma was confirmed by placing mice in 

420 hyperoxic chambers (60% O2) (Mahiddine et al., 2019). This resulted in a dramatic reduction in 

421 neutrophil influx within the tumour and also improved the ability of these cells to oppose tumour 

422 growth through increased activation and expression of several MMPs and ROS production. This is 

423 consistent with hypoxia not only affecting the recruitment of neutrophils, but also their function. 

424 Determining the effects of hypoxia on neutrophil number and phenotype in the normal 

425 endometrium would be of great interest to advance our understanding of menstrual physiology.

426

427 Effects of hypoxia on neutrophils have also been observed in benign tissues. Airway inflammation 

428 studies have revealed that hypoxia, via HIF-1α and HIF-2α, prolonged neutrophil lifespan by 

429 inhibiting apoptosis (Walmsley et al., 2005; Thompson et al., 2014). Glucocorticoids have also been 

430 shown to delay neutrophil apoptosis in vitro, but this did not occur in the presence of hypoxia 

431 (Marwick et al., 2013). Neutrophil apoptosis has been identified in the menstrual endometrium of 

432 mice, when hypoxia is present (Armstrong et al., 2017). In addition, glucocorticoids have been 
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433 identified as having an important role in the human menstrual endometrium (McDonald et al., 2006; 

434 Rae et al., 2009). The impact of hypoxia on endometrial myeloid apoptosis has not been examined to 

435 date. 

436

437 Impact on macrophages

438 Macrophages have been detected in the endometrium throughout the menstrual cycle, both close 

439 to the endometrial glands and in the stromal compartment (Bonatz et al., 1992). They show a peri-

440 menstrual peak in number, reaching up to 15% of the cell total number at the time of menses 

441 (Salamonsen & Woolley, 1999). Like neutrophils, it is proposed that macrophages play a critical role 

442 in the onset of endometrial breakdown via production and release of MMPs (reviewed in (Critchley 

443 et al., 2001; Thiruchelvam et al., 2013)). There are also indications of their involvement in glandular 

444 remodelling (Garry et al., 2010) and endometrial regeneration (Maybin et al., 2012; Cousins, 

445 Kirkwood, et al., 2016), including the regulation of angiogenesis (Thiruchelvam et al., 2016). 

446

447 Macrophages are remarkably plastic cells, capable of shifting towards different phenotypes by 

448 sensing the surrounding microenvironment (Martinez, 2008).Thus, their microenvironment may 

449 affect their recruitment and function. Historically, macrophage polarisation has been categorised as 

450 classical (M1) or alternative (M2). M1 phenotype is associated with microbicidal properties and M2 

451 reflects a more regulatory, anti-inflammatory phenotype. More recently, macrophage polarisation is 

452 understood to be a dynamic spectrum of macrophage transition in response to environmental cues 

453 (Martinez & Gordon, 2014). As there is mounting evidence for hypoxia in the local endometrial 

454 environment at menstruation (Cousins, Murray, et al., 2016; Maybin et al., 2018), it is important to 

455 determine its effect on endometrial macrophages.

456
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457 Under physiological conditions M2 macrophages are involved in angiogenesis and cellular clearance, 

458 hence promote wound healing. However, tumour-infiltrating macrophages (TAMs) are often 

459 correlated with poor cancer prognosis (Kawanaka et al., 2008). TAMs have been shown to be 

460 retained in hypoxic regions of tumours through the Sema3A/Neuropilin-1signaling axis, which is 

461 regulated by HIF-2α (Casazza et al., 2013). The influence of hypoxia on TAMs is not only limited to 

462 macrophage number but also influences their phenotype. Indeed, specific TAM phenotypical subsets 

463 have been reported depending on intra-tumoral oxygen levels (Laoui et al., 2014). 

464

465 Non-tumoral studies have also linked HIF to changes in macrophage phenotype. In a model of 

466 endotoxemia, HIF-1α and HIF-2α were differentially expressed in M1 and M2-macrophages 

467 respectively (Takeda et al., 2010). In addition, in the context of obesity and adipose tissue 

468 inflammation, HIF-1α has been proven to promote inflammation and insulin resistance through M1 

469 macrophage polarisation whereas HIF-2α ameliorated the effects via M2-macrophage induction 

470 (reviewed in (Lin & Simon, 2016)). Interestingly, HIF-1α was found to be decreased in mouse adipose 

471 tissue when glucocorticoid activation was suppressed, suggesting a crucial role of glucocorticoids in 

472 HIF-dependent macrophage polarisation (Chapman et al., 2013). Thus, different research fields 

473 converge around the concept that HIF-1α may be required for M1 polarization of macrophages, 

474 while HIF-2α might promote M2 polarization. 

475

476 The menstrual endometrium presents a unique model of transient, physiological hypoxia in which to 

477 study macrophage number and phenotype. HIF-2α may have a role in the recruitment and function 

478 of macrophages during implantation, when endometrial HIF-2 was found to be present (Maybin et 

479 al., 2018). However, a recent study of mice with a targeted deletion of HIF-1 in myeloid cells 

480 resulted in decreased pregnancy rates and increased miscarriage rates, suggesting that HIF-1 

481 dependent pathways in myeloid cells are also important for maintenance of pregnancy (Köstlin-Gille 
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482 et al., 2019). It would be informative to establish if the balance between HIF-1α/HIF-2α determines 

483 the pro-inflammatory or anti-inflammatory fate of the endometrium. 

484

485 Impact of hypoxia on proliferation

486 After ‘injury’, fibroblasts must migrate and proliferate in the damaged area, where they produce 

487 extracellular matrix (ECM) components that contribute to repair (Gonzalez et al., 2016). This 

488 production must be tightly regulated to prevent excessive ECM growth, scar formation and fibrosis 

489 (Ruthenborg et al., 2014). In dermal tissue, hypoxia has been shown to stimulate macrophage 

490 growth factors that may contribute to fibroblast proliferation and tissue repair (Murdoch, Muthana 

491 & Lewis, 2005). Macrophage production of platelet-derived growth factor (PDGF) enhances 

492 fibroblast mitosis, while transforming growth factor β (TGF-β) promotes the formation of the ECM 

493 (Ruthenborg et al., 2014). In addition, hypoxia has been proven to induce the transcription of VEGF, 

494 connective tissue growth factor and adrenomedullin in endometrial stromal tissue (Maybin, 

495 Battersby, et al., 2011; Maybin et al., 2012). Hence, hypoxia may induce a pro-repair environment by 

496 modifying the secretome of endometrial cell populations.

497

498 To complete tissue restoration, reepithelialisation of the affected area must take place. In the skin, 

499 this is achieved through the migration and proliferation of keratinocytes towards the injury site 

500 (Ruthenborg et al., 2014). Stabilisation of HIF-1α in a mouse model of skin wound healing revealed 

501 its role in promoting keratinocyte proliferation and migration to the injured area, accelerating 

502 wound closure (Kalucka et al., 2013). This is consistent with the findings of delayed endometrial 

503 repair with decreased HIF-1 (Maybin et al., 2018). 

504
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505 Impact of hypoxia on vascular remodelling and angiogenesis 

506 Angiogenesis and vascular remodelling are crucial events in the endometrium throughout the 

507 menstrual cycle. Optimal vascular function is necessary to support the repair of the functional 

508 endometrial layer and to supply the thickened endometrium required for successful implantation 

509 and placentation. 

510

511 VEGF is a key mediator of both physiological and tumoral angiogenesis and may be induced by 

512 hypoxia (Carmeliet, 2005). VEGF mRNA and protein have been detected during all phases of the 

513 menstrual cycle, both in the stromal compartment and the glandular epithelium (Stephen Charnock-

514 Jones et al., 1993; Shifren et al., 1996; Punyadeera, 2006) but was maximal during menses (Sharkey 

515 et al., 2000; Graubert et al., 2001; Maybin, Hirani, et al., 2011). Studies in mouse and macaque 

516 models of menstruation have shown that blocking VEGF dramatically decreases reepithelialisation 

517 and new blood vessel formation in the endometrium (Fan et al., 2008), consistent with an essential 

518 role for VEGF in endometrial angiogenesis and repair. 

519

520 Hypoxia has been detected in the mouse model of simulated menses (Chen et al., 2015; Cousins, 

521 Murray, et al., 2016; Maybin et al., 2018) and coincides with increased VEGF mRNA (Cousins, 

522 Murray, et al., 2016). Hypoxia and VEGF have also been detected in human perimenstrual 

523 endometrial biopsies (Punyadeera, 2006) highlighting their possible interrelation. In vitro studies 

524 have also shown that subjecting endometrial and epithelial stromal cells to hypoxia increases VEGF 

525 mRNA and protein (Popovici et al., 1999; Sharkey et al., 2000; Graubert et al., 2001) and that 

526 silencing of HIF-1α abrogates this hypoxia-induced VEGF expression (Maybin, Hirani, et al., 2011; 

527 Chen et al., 2015). Through a chromatin immunoprecipitation (ChIP) assay, Chen et al. detected the 

528 direct binding of HIF-1α to the VEGF promoter, which was maximal during endometrial breakdown 

529 of the mouse model of menses (Chen et al., 2015). Inhibition of HIF-1α using 2-methoxyestradiol (2-
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530 ME) significantly suppressed VEGF levels during menses. Therefore, hypoxia, and more specifically 

531 HIF-1α, seems to promote endometrial VEGF during menses.

532

533 In addition, VEGF expression is induced by different cytokines and chemokines (Li et al., 1995; Stavri 

534 et al., 1995; Zagzag et al., 2006), some of which contain hypoxic response elements. Optimal blood 

535 vessel formation requires the trafficking of endothelial progenitors cells through the interaction of 

536 the chemokine CXCL12 with its receptor CXCR4 (Ruthenborg et al., 2014). Both ligand and receptor 

537 have been found to be upregulated by HIF-1α, contributing to angiogenesis and blood vessel repair 

538 partly through VEGF (Ceradini et al., 2004; Zagzag et al., 2006). CXCL12 and CXCR4 have been 

539 described in the human endometrium (Ruiz et al., 2010) and endometrial CXCR4 was found to be 

540 decreased in patients with heavy menstrual bleeding (Maybin et al., 2018). Hence, the interactions 

541 between hypoxia pathways and inflammatory processes may significantly influence endometrial 

542 vascular function.

543

544 During decidualisation there is in vitro evidence that endometrial stromal cells increase VEGF mRNA 

545 and protein (Popovici et al., 1999; Matsui et al., 2004) and that hypoxia induced further increases in 

546 VEGF (Popovici et al., 1999). This VEGF production may be responsible for macrophage recruitment 

547 and polarisation towards a pro-angiogenic M2 phenotype (Wheeler et al., 2018). Thus, the 

548 responsiveness of the decidualised stroma to hypoxia suggests a possible role in the preparation of 

549 the endometrial vasculature for implantation. Uterine HIF2-α deficiency has been shown to impair 

550 decidualisation in mice, revealing a downregulation of prolactin-related factors which can 

551 compromise the maintenance of the corpus luteum and therefore endometrial receptivity 

552 (Matsumoto et al., 2018). 

553

554 When studying implantation in mice, HIF factors were found to be differentially expressed at the 

555 time of peri-implantation: HIF-1α was detected in the luminal epithelium, whereas HIF-2α 
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556 expression was limited to the stromal compartment and neither correlated with VEGF expression 

557 (Daikoku et al., 2003). Therefore, HIF effects on implantation seem to be more versatile than simply 

558 contributing to vessel formation, playing a substantial role in decidualisation, endometrial 

559 receptivity and embryo survival (Matsumoto et al., 2018). After implantation, HIF-1α was found in 

560 the luminal epithelium and the decidual layer. However, the strongest signal came from HIF-2α, 

561 whose expression was localised to stromal cells surrounding the blastocyst. This post-implantation 

562 HIF-2α expression was correlated with VEGF induction, switching to a proangiogenic stimulus once 

563 implantation had taken place (Daikoku et al., 2003).

564

565

566 THE ROLE OF HYPOXIA IN ENDOMETRIAL PATHOLOGY

567 As outlined above, the literature regarding the influence of hypoxia on inflammation, proliferation 

568 and vascular function is increasing (Fig. 3). The influence of oxygen levels on implantation, 

569 placentation and disorders such as pre-eclampsia has been comprehensively reviewed within this 

570 series by Burton et al. (Burton, 2009). The impact of hypoxia on embryo function has been covered 

571 in detail by Dunwoodie et al. (Dunwoodie, 2009). Therefore, this section is focused on the role of 

572 endometrial hypoxia during menstruation and its potential in the identification of novel diagnostic 

573 and therapeutic strategies. 

574

575 Abnormal uterine bleeding

576 Abnormal uterine bleeding (AUB) affects 20-30% of pre-menopausal women and over 800,000 

577 women seek treatment in the UK each year (National Heavy Menstrual Bleeding Audit, 2011). 

578 Available medical treatments are often discontinued due to side effects or lack of efficacy. Research 

579 in this area was previously hindered by lack of a consistent classification system for the diagnosis of 
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580 causes of AUB. This was rectified by the development of the FIGO classification system of structural 

581 and non-structural causes (Munro, Critchley & Fraser, 2011, 2018) (Fig. 4).

582

583 Structural causes of AUB

584 Structural causes of AUB can be detected on examination or imaging of the uterus, e.g polyps, 

585 adenomyosis, leiomyoma (fibroids) and malignancy (Munro, Critchley & Fraser, 2011, 2018). These 

586 conditions have previously been under-diagnosed, with clinicians often treating the symptom of AUB 

587 without identifying the underlying cause. This has limited our knowledge on why these conditions 

588 develop and why they result in AUB.  

589

590 Adenomyosis is the presence of ectopic endometrial glands and stroma within the myometrial layer 

591 of the uterus. It occurs in 7-27% of reproductive aged women and presents with painful, heavy 

592 menstrual bleeding (Naftalin et al., 2012; Mavrelos et al., 2017). The impact of the adenomyotic 

593 lesions on the eutopic endometrium and the mechanisms causing AUB are not well understood. AUB 

594 due to adenomyosis (AUB-A) is particularly challenging as it is often resistant to medical treatment 

595 and surgical options (ablation or hysterectomy) are unacceptable to those wishing to preserve their 

596 fertility. 

597

598 There is some evidence that the hypoxic response is aberrant within adenomyotic lesions. A study of 

599 hysterectomy samples from 14 women with adenomyosis and 9 without revealed increased VEGF 

600 protein in the eutopic endometrium of women with adenomyosis and increased VEGF and HIF-1 

601 protein in ectopic versus eutopic endometrium (Goteri et al., 2009). This suggests that a hypoxic 

602 environment in the adenomyotic lesions could contribute to increased vessel formation. In 

603 endometriosis, where ectopic endometrium implants outside of the uterus, HIF-1 was also found 

604 to be increased in ectopic versus eutopic endometrium (Wu et al., 2007; Young et al., 2014). 
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605 Inhibition of HIF-1 in a mouse model of endometriosis suppressed growth of lesions (Becker et al., 

606 2008), identifying the hypoxia pathway as a potential therapeutic target. The peritoneum is a 

607 common site for implantation of ectopic endometrial deposits in endometriosis. Women with 

608 endometriosis have been shown to have increased HIF-1 in non-affected peritoneum compared to 

609 peritoneum from women without disease (Young et al., 2014), consistent with a role of the hypoxia 

610 pathway in the development of peritoneal disease. Studies examining the non-affected myometrium 

611 in women with adenomyosis are not yet available, but similar alterations in hypoxic response would 

612 highlight hypoxia pathways as a potential target for preventative and therapeutic interventions.

613

614 Leiomyomas (uterine fibroids) are common, benign tumours of the myometrium that form as a 

615 consequence of the proliferation of uterine smooth muscle cells and collagen matrix. They occur in 

616 approximately 70% of women (Stewart et al., 2017) and are extremely heterogeneous in size, 

617 location and pathophysiology. Leiomyoma are symptomatic in approximately 50% of women (Day 

618 Baird et al., 2003) and may cause symptoms of AUB, pressure, pelvic pain and be associated with 

619 subfertility. 

620

621 Genome wide association studies have identified genetic subgroups that may predispose to 

622 leiomyoma formation (reviewed in (Stewart et al., 2016)) but local mechanisms regulating their 

623 development remain an area of active research. Uterine leiomyomas contain broad avascular areas 

624 and HIF-1 protein was found to be increased in leiomyoma nuclear protein extracts when 

625 compared to adjacent myometrium (Ishikawa et al., 2019). However, it is not yet clear whether 

626 hypoxia is necessary for leiomyoma development and/or growth. In contrast, an in vivo study of 

627 women with leiomyoma using DCE-MRI has revealed increased Ktrans (a combination of perfusion and 

628 permeability) in fibroids compared with normal uterus (Majd et al., 2017) which does not support 

629 the presence of hypoxia within fibroids. There is evidence that treatment of leiomyomas with 

630 gonadotrophin releasing hormone (GnRH) analogues, often used pre-operatively to reduce fibroid 
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631 size and decrease AUB, lead to a decrease in perfusion parameters (Munro et al., 2014). These 

632 contrasting in vitro and in vivo findings may reflect the heterogeneity of leiomyomas and it remains 

633 unclear if altered perfusion is associated with AUB. 

634

635 The cause of AUB experienced by a proportion of women with leiomyomas is not understood. 

636 Vasoconstriction may be impaired at the time of menstruation in women with fibroids, with 

637 leiomyoma tissue expressing altered levels of endothelin receptors and prostaglandin F2 when 

638 compared to normal myometrium (Pekonen, Nyman & Rutanen, 1994; Miura et al., 2006). A small 

639 decrease in spiral arteriole vasoconstriction can significantly increase menstrual blood flow, causing 

640 heavy menstrual bleeding. A greater understanding of the role of hypoxia in leiomyoma formation 

641 and growth may identify new, specific treatments to reduce their presence, size and symptoms.

642

643 Endometrial cancer. The importance of hypoxia in the tumour microenvironment is well established, 

644 including its influence on immune cell populations, angiogenesis, tumour progression and metastasis 

645 (De Bock, Mazzone & Carmeliet, 2011; Casazza et al., 2014; Schito & Semenza, 2016; Semenza, 

646 2016). The accuracy of translation of these principles to patients with endometrial cancer is less well 

647 determined. In a quest to identify a robust biomarker that would predict tumour behaviour, Chang 

648 et al identified an eight gene set of lymphocyte and tumour hypoxia markers and validated its 

649 performance in predicting overall survival in six cancers, including 370 women with endometrial 

650 cancer (Chang, Forde & Lai, 2019). They found a superior performance over current tumour staging 

651 parameters, highlighting the importance of hypoxia in determining risk and aiding clinical decision 

652 making. 

653

654 Assessment of endometrial tissues from 386 patients with endometrial carcinoma using CAIX as a 

655 hypoxia marker and CD34 to determine vascular density, revealed that patients with the presence of 

656 both hypoxia and high vascular density (16.4%) had reduced disease-specific survival and distant 
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657 disease-free survival (Reijnen et al., 2019). In vivo imaging with DCE-MRI revealed that a poor 

658 prognosis was associated with low microvascular blood flow to the endometrial tumour (Haldorsen 

659 et al., 2013, 2014; Berg et al., 2016). This was thought to reflect disorganised angiogenesis with 

660 coexisting vascular proliferation and hypoxia.  These studies highlight normalisation of the 

661 vasculature to limit hypoxia as a potential therapeutic target in endometrial cancer. 

662

663 Non-structural causes of AUB

664 These non-structural disorders are not usually identified by routine pelvic imaging. They include 

665 coagulopathies, ovulatory dysfunction, endometrial and iatrogenic causes (Munro, Critchley & 

666 Fraser, 2011, 2018). Evidence for a role of hypoxia in these disorders is limited but its contribution to 

667 AUB of endometrial origin (AUB-E) is discussed below.

668

669 AUB-E includes disorders of local endometrial haemostasis, vascular function and/or inflammation 

670 (Fig. 4). Women with objectively defined HMB (>80ml/cycle) had reduced levels of HIF-1 protein 

671 and downstream target genes in menstrual phase endometrial biopsies when compared to those 

672 from women with normal blood loss (Maybin et al., 2018). Examination of endometrial repair in 

673 mice where hypoxia was prevented during simulated menses, or where HIF-1 was 

674 pharmacologically or genetically reduced, revealed delayed repair (Maybin et al., 2018). This is 

675 consistent with hypoxia having a key role in the rapid endometrial repair necessary to limit 

676 menstrual blood loss. The delayed repair in a non-hypoxic mouse menstruation model could be 

677 rescued with a pharmacological compound that stabilises HIF-1, identifying a potential non-

678 hormonal therapeutic target for women with AUB-E. 

679

680 The cause of the endometrial tissue hypoxia observed at menstruation is unknown. It is likely that 

681 spiral arteriole vasoconstriction limits blood supply to the functional layer of the endometrium 
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682 following progesterone withdrawal (Markee, 1940). Hence, factors that limit the ability of the 

683 specialised endometrial arterioles to constrict will have a significant impact on the presence of 

684 endometrial hypoxia. Women with the symptom of HMB have been shown to have significantly 

685 decreased smooth muscle myosin heavy chain in their spiral arterioles and also reduced vascular 

686 smooth muscle cell proliferation during the mid-late secretory phase compared to those with normal 

687 menstrual blood loss (Abberton et al., 1999). Another study showed that endometrial vessel wall 

688 circumference and endothelial cell focal discontinuities were both significantly larger in women with 

689 HMB compared to normal controls (Mints et al., 2007).  Furthermore, calponin (a vascular smooth 

690 muscle cell contractile protein) was found to be significantly lower in endometrial blood vessels in 

691 women with HMB (Biswas Shivhare et al., 2014). This evidence is all consistent with an aberrant 

692 vasculature within the pre-menstrual endometrium of women with AUB-E, leading to a suboptimal 

693 hypoxic response during menstruation.

694

695

696 CONCLUSIONS

697 Herein, we have reviewed the mounting evidence for the presence of endometrial hypoxia and its 

698 potential impact on endometrial function. Furthering our understanding of hypoxia in endometrial 

699 physiology and pathology using the tools described in this review may provide novel preventative 

700 and therapeutic strategies for those suffering from endometrial disorders, including abnormal 

701 uterine bleeding (AUB). Furthermore, a complete understanding of optimal endometrial physiology 

702 may inform the management of other disorders where aberrant hypoxia is a prominent feature, 

703 such as tumour biology and chronic obstructive pulmonary disorder. Addressing the gaps in our 

704 knowledge of how hypoxia influences endometrial function represents an exciting area with huge 

705 translational potential. 

706
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1132 FIGURE LEGENDS

1133 Figure 1. Rodent models of simulated menstruation. (a) An exogenous hormone mouse model of simulated 

1134 menstruation. Female mice are ovariectomized (ovex) and allowed to recover for 7-14 days before being given 

1135 subcutaneous injections of oestradiol (E2). A progesterone (P4 ) implant is subcutaneously inserted and lower 

1136 dose E2 injections administered. The decidualisation stimulus (oil) is intracervically administered.  In order to 

1137 induce a menstrual-like event, the P4 implant is subsequently removed (T0). This triggers a menstrual like bleed 

1138 (8h after P4 withdrawal-T8) and subsequent endometrial regeneration (24h after P4 withdrawal-T24). (b) A 

1139 pseudopregnancy mouse model of simulated menstruation. Female mice are mated with vasectomized males 

1140 to induce pseudopregnancy. Three to four days after the formation of the vaginal plug, decidualisation is 

1141 externally induced via uterine oil injection. Two days after the decidualisation stimulus, mice are 

1142 ovariectomised (ovex) to trigger P4 withdrawal (T0). Using this approach, endometrial breakdown is apparent 
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1143 12-16h after P4 withdrawal (T12) and re-epithelialisation can be detected 24h after P4 withdrawal. Optionally, 

1144 mice can receive daily subcutaneous injections of E2 to prevent atrophy of the uterus following ovariectomy. 

1145 (c) Xenograft mouse model. Female immunodeficient mice are ovariectomized (ovex) and allowed to recover 

1146 for 7-14 days before the implantation of the endometrial patches/dissociated endometrial cells. At the time of 

1147 implantation or shortly after the formation of the xenografts, mice are treated with E2 and P4 for 21-28 days to 

1148 induce the menstrual cycle. When the P4 pellet is removed, menstruation and successive regeneration takes 

1149 place in the xenograft for the next 4-8 days.

1150

1151 Figure 2. In vivo methods with the potential to detect markers of endometrial hypoxia in women.  Left: 

1152 previous in vivo work to assess human endometrial hypoxia, shown with structural MRI of the uterus and 

1153 surrounding tissues. Right: potential non-invasive imaging methods for translation from other body areas. [+] 

1154 indicates advantages of each technique, [-] indicates disadvantages.  Relevant references shown for each.  

1155 DCE-MRI = Dynamic contrast-enhanced MRI, MRI = Magnetic resonance imaging.

1156

1157 Figure 3. Overview of the presence and role of hypoxia in endometrial physiology. (a) Hypoxia during 

1158 implantation. Endometrial stromal cells undergo decidualisation under the influence of progesterone. Hypoxia 

1159 inducible factor (HIF)-2α in these uterine stromal cells supports decidualisation, embryo invasion and survival. 

1160 Endometrial blood vessels undergo dynamic remodelling that may be influenced by hypoxia/HIF. (b) Hypoxia 

1161 during endometrial breakdown. Vasoconstriction of the endometrial vessels may limit blood loss during 

1162 menstruation and cause transient endometrial hypoxia to stabilise HIF-1α. The endometrial leukocyte 

1163 population may be altered in number and/or function by hypoxia/HIF. (c) Role of hypoxia during endometrial 

1164 repair. Hypoxia is not detected in endometrial areas that have reepithelialised, while those areas undergoing 

1165 active regeneration remain hypoxic. This hypoxia is thought to promote endometrial VEGF (alongside other 

1166 factors), which is responsible for reepithelialisation and new blood vessel formation. P4 = progesterone, G = 

1167 glands, BV = blood vessel, VEGF = vascular endothelial growth factor, HIF = hypoxia-inducible factor.

1168

1169 Figure 4. Abnormal uterine bleeding (AUB) and the potential role of hypoxia. Abnormal uterine bleeding may 

1170 be due to structural (Polyps, Adenomyosis, Leiomyoma, Malignancy) or non-structural (Coagulopathy, 

1171 Ovulatory, Endometrial, Iatrogenic or Not otherwise classified) disorders. The role of hypoxia in AUB is 
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1172 unknown but its potential role in four disorders is illustrated. (I) Leiomyoma (fibroids): the decreased levels of 

1173 endothelin and PG2Fα receptors may compromise endometrial vasoconstriction and increase menstrual blood 

1174 flow. (II) Malignancy: tumour hypoxia leads to disorganised angiogenesis and increased metastasis. (III) 

1175 Endometrial disorders: endothelial cell focal discontinuities and impairment of vascular smooth muscle cells 

1176 may influence vasoconstriction. This may decrease HIF-1α and prevent optimal post-menstrual repair. (IV) 

1177 Adenomyosis: VEGF and HIF-1α overexpression may contribute to increased vessel formation and AUB. G = 

1178 glands, BV = blood vessels, Myo = myometrium, E = endometrium, VEGF = vascular endothelial growth factor, 

1179 HIF = hypoxia-inducible factor.

1180

1181

1182
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Figure 1. Rodent models of simulated menstruation. (a) An exogenous hormone mouse model of simulated 
menstruation. Female mice are ovariectomized (ovex) and allowed to recover for 7-14 days before being 
given subcutaneous injections of oestradiol (E2). A progesterone (P4 ) implant is subcutaneously inserted 

and lower dose E2 injections administered. The decidualisation stimulus (oil) is intracervically administered. 
 In order to induce a menstrual-like event, the P4 implant is subsequently removed (T0). This triggers a 
menstrual like bleed (8h after P4 withdrawal-T8) and subsequent endometrial regeneration (24h after P4 

withdrawal-T24). (b) A pseudopregnancy mouse model of simulated menstruation. Female mice are mated 
with vasectomized males to induce pseudopregnancy. Three to four days after the formation of the vaginal 

plug, decidualisation is externally induced via uterine oil injection. Two days after the decidualisation 
stimulus, mice are ovariectomised (ovex) to trigger P4 withdrawal (T0). Using this approach, endometrial 

breakdown is apparent 12-16h after P4 withdrawal (T12) and re-epithelialisation can be detected 24h after 
P4 withdrawal. Optionally, mice can receive daily subcutaneous injections of E2 to prevent atrophy of the 

uterus following ovariectomy. (c) Xenograft mouse model. Female immunodeficient mice are ovariectomized 
(ovex) and allowed to recover for 7-14 days before the implantation of the endometrial patches/dissociated 

endometrial cells. At the time of implantation or shortly after the formation of the xenografts, mice are 
treated with E2 and P4 for 21-28 days to induce the menstrual cycle. When the P4 pellet is removed, 

menstruation and successive regeneration takes place in the xenograft for the next 4-8 days. 
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Figure 2. In vivo methods with the potential to detect markers of endometrial hypoxia in women.  Left: 
previous in vivo work to assess human endometrial hypoxia, shown with structural MRI of the uterus and 
surrounding tissues. Right: potential non-invasive imaging methods for translation from other body areas. 
[+] indicates advantages of each technique, [-] indicates disadvantages.  Relevant references shown for 

each.  DCE-MRI = Dynamic contrast-enhanced MRI, MRI = Magnetic resonance imaging. 
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Figure 3. Overview of the presence and role of hypoxia in endometrial physiology. (a) Hypoxia during 
implantation. Endometrial stromal cells undergo decidualisation under the influence of progesterone. 

Hypoxia inducible factor (HIF)-2α in these uterine stromal cells supports decidualisation, embryo invasion 
and survival. Endometrial blood vessels undergo dynamic remodelling that may be influenced by 

hypoxia/HIF. (b) Hypoxia during endometrial breakdown. Vasoconstriction of the endometrial vessels may 
limit blood loss during menstruation and cause transient endometrial hypoxia to stabilise HIF-1α. The 

endometrial leukocyte population may be altered in number and/or function by hypoxia/HIF. (c) Role of 
hypoxia during endometrial repair. Hypoxia is not detected in endometrial areas that have reepithelialised, 

while those areas undergoing active regeneration remain hypoxic. This hypoxia is thought to promote 
endometrial VEGF (alongside other factors), which is responsible for reepithelialisation and new blood vessel 
formation. P4 = progesterone, G = glands, BV = blood vessel, VEGF = vascular endothelial growth factor, 

HIF = hypoxia-inducible factor. 
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Figure 4. Abnormal uterine bleeding (AUB) and the potential role of hypoxia. Abnormal uterine bleeding may 
be due to structural (Polyps, Adenomyosis, Leiomyoma, Malignancy) or non-structural (Coagulopathy, 
Ovulatory, Endometrial, Iatrogenic or Not otherwise classified) disorders. The role of hypoxia in AUB is 

unknown but its potential role in four disorders is illustrated. (I) Leiomyoma (fibroids): the decreased levels 
of endothelin and PG2Fα receptors may compromise endometrial vasoconstriction and increase menstrual 
blood flow. (II) Malignancy: tumour hypoxia leads to disorganised angiogenesis and increased metastasis. 
(III) Endometrial disorders: endothelial cell focal discontinuities and impairment of vascular smooth muscle 
cells may influence vasoconstriction. This may decrease HIF-1α and prevent optimal post-menstrual repair. 
(IV) Adenomyosis: VEGF and HIF-1α overexpression may contribute to increased vessel formation and AUB. 
G = glands, BV = blood vessels, Myo = myometrium, E = endometrium, VEGF = vascular endothelial growth 

factor, HIF = hypoxia-inducible factor. 
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