335 research outputs found

    SUBARU Near-Infrared Multi-Color Images of Class II Young Stellar Object, RNO91

    Get PDF
    We conducted sub-arcsecond near-infrared imaging observations of RNO91 with CIAO mounted on the SUBARU 8.2 m telescope. We present our JHK band data along with optical images, which when considered together reveal a complex circumstellar structure. We examined the colors of associated nebula and compared the geometry of the outflow/disk system suggested by our data with that already proposed on the basis of previous studies. Our K-band image shows bright circumstellar nebulosity detected within 2"(300AU) around the central source while it is less conspicuous at shorter wavelengths such as J and optical. P.A. and size of this red color nebulosity in our H-K color image agree with those of the previously detected polarization disk. These data agreement indicate that this bright circumstellar nebulosity region which follows the reddening law might be attributed to a disk-like structure. At J and optical wavelengths, several blue knot-like structures are detected around and beyond the bright circumstellar nebulosity. We suggest that these knotty reflection nebulae may represent disintegrating fragments of an infalling envelope. The three-color composite image has an appearance of arc-shaped nebulosity extending to the north and to the east through the central source. On the other end of this arc-shaped structure, the nebula appears to become more extended (2."3 long) to the southwest. We interpret these structures as roots of bipolar cavities opening to the northeast and southwest. The complex distribution of reflection nebulosity seen around RNO91 appears to confirm the interpretation of this source as an object dispersing its molecular envelope while transitioning from protostar to T Tauri star.Comment: 18 pages, 6 figures, Accepted by Publications of the Astronomical Society of Japa

    Near-Infrared Coronagraphic Observations of the T Tauri Binary System UY Aur

    Get PDF
    We present a near-infrared image of UY Aur, a 0.9" separated binary system, using the Coronagraphic Imager with Adaptive Optics on the Subaru Telescope. Thanks to adaptive optics, the spatial resolution of our image was ~0.1" in the full width at half maximum of the point spread function, the highest achieved. By comparison with previous measurements, we estimated that the orbital period is ~1640 yrs and the total mass of the binary is ~1.73 solar mass. The observed H-band magnitude of the secondary varies by as much as 1.3 mag within a decade, while that of the primary is rather stable. This inconstancy may arise from photospheric variability caused by an uneven accretion rate or from the rotation of the secondary. We detected a half-ring shaped circumbinary disk around the binary with a bright southwest part but a barely detectable northeast portion. The brightness ratio is ~57. Its inner radius and inclination are about 520 AU and 42, respectively. The disk is not uniform but has remarkable features, including a clumpy structure along the disk, circumstellar material inside the inner cavity, and an extended armlike structure. The circumstellar material inside the cavity probably corresponds to a clump or material accreting from the disk onto the binary. The armlike structure is a part of the disk, created by the accretion from the outer region of the disk or encounters with other stellar systems.Comment: 16 pages, 6 figures; accepted for publication in A

    Annular substructures in the transition disks around LkCa 15 and J1610

    Get PDF
    We present high resolution millimeter continuum ALMA observations of the disks around the T Tauri stars LkCa 15 and J1610. These disks host dust-depleted inner regions, possibly carved by massive planets, and are of prime interest to study the imprints of planet-disk interactions. While at moderate angular resolution they appear as a broad ring surrounding a cavity, the continuum emission resolves into multiple rings at a resolution of ~60×\times40 mas (~7.5 au for LkCa 15, ~6 au for J1610) and ~7μ7\,\muJy beam1^{-1} rms at 1.3 mm. In addition to a broad extended component, LkCa 15 and J1610 host 3 and 2 narrow rings, respectively, with two bright rings in LkCa 15 being radially resolved. The rings look marginally optically thick, with peak optical depths of ~0.5 (neglecting scattering), in agreement with high angular resolution observations of full disks. We perform hydrodynamical simulations with an embedded, sub-Jovian-mass planet and show that the observed multi-ringed substructure can be qualitatively explained as the outcome of the planet-disk interaction. We note however that the choice of the disk cooling timescale alone can significantly impact the resulting gas and dust distributions around the planet, leading to different numbers of rings and gaps and different spacings between them. We propose that the massive outer disk regions of transition disks are favorable places for planetesimals and possibly second generation planet formation of objects with a lower mass than the planets carving the inner cavity (typically few MJupM_{\rm Jup}), and that the annular substructures observed in LkCa 15 and J1610 may be indicative of planetary core formation within dust-rich pressure traps. Current observations are compatible with other mechanisms being at the origin of the observed substructures, in particular with narrow rings generated at the edge of the CO and N2_2 snowlines.Comment: 17 pages, accepted for publication in Astronomy & Astrophysic

    Microstructure dependence of fatigue crack propagation behavior in wrought magnesium alloy

    Get PDF
    This paper deals with the fatigue crack propagation behavior of rolled AZ31B magnesium alloy (grain size: approximately 40 ?m). Fatigue crack propagation tests were performed on single edge notched tension specimens at a stress ratio of R = 0.1 and a frequency of 10 Hz at room temperature. Loading axes were parallel to the rolling direction; fatigue cracks propagated parallel to the transverse direction (L-T specimen), parallel to the short transverse direction (L-S specimen). Loading axis was perpendicular to the rolling direction; fatigue cracks propagated parallel to the transverse direction (S-T specimen). The crack growth rate (da/dN) of the L-S specimen was several times lower than that of the L-T specimen in the examined stress intensity factor range (?K). Fracture surfaces of the L-T and L-S specimens showed many steps parallel and perpendicular, respectively, to the macroscopic crack growth direction. The da/dN of the S-T specimen was higher than that of the L-T and L-S specimens in the examined ?K. The fracture surface was covered by quasi-cleavage facets independent of macroscopic crack growth direction, and the fracture surface roughness at low ?K was larger than that at high ?K

    The SPHERE view of three interacting twin disc systems in polarized light

    Get PDF
    Dense stellar environments as hosts of ongoing star formation increase the probability of gravitational encounters among stellar systems during the early stages of evolution. Stellar interaction may occur through non-recurring, hyperbolic, or parabolic passages (a so-called 'fly-by'), through secular binary evolution, or through binary capture. In all three scenarios, the strong gravitational perturbation is expected to manifest itself in the disc structures around the individual stars. Here, we present near-infrared polarized light observations that were taken with the SPHERE/IRDIS instrument of three known interacting twin-disc systems: AS 205, EM∗ SR 24, and FU Orionis. The scattered light exposes spirals likely caused by the gravitational interaction. On a larger scale, we observe connecting filaments between the stars. We analyse their very complex polarized intensity and put particular attention to the presence of multiple light sources in these systems. The local angle of linear polarization indicates the source whose light dominates the scattering process from the bridging region between the two stars. Further, we show that the polarized intensity from scattering with multiple relevant light sources results from an incoherent summation of the individuals' contribution. This can produce nulls of polarized intensity in an image, as potentially observed in AS 205. We discuss the geometry and content of the systems by comparing the polarized light observations with other data at similar resolution, namely with ALMA continuum and gas emission. Collective observational data can constrain the systems' geometry and stellar trajectories, with the important potential to differentiate between dynamical scenarios of stellar interaction

    Direct Imaging of Fine Structures in Giant Planet Forming Regions of the Protoplanetary Disk around AB Aurigae

    Full text link
    We report high-resolution 1.6 \micron polarized intensity (PIPI) images of the circumstellar disk around the Herbig Ae star AB Aur at a radial distance of 22 AU (0."150."15) up to 554 AU (3.""85), which have been obtained by the high-contrast instrument HiCIAO with the dual-beam polarimetry. We revealed complicated and asymmetrical structures in the inner part (\lesssim140 AU) of the disk, while confirming the previously reported outer (rr \gtrsim200 AU) spiral structure. We have imaged a double ring structure at \sim40 and \sim100 AU and a ring-like gap between the two. We found a significant discrepancy of inclination angles between two rings, which may indicate that the disk of AB Aur is warped. Furthermore, we found seven dips (the typical size is \sim45 AU or less) within two rings as well as three prominent PIPI peaks at \sim40 AU. The observed structures, including a bumpy double ring, a ring-like gap, and a warped disk in the innermost regions, provide essential information for understanding the formation mechanism of recently detected wide-orbit (rr >>20 AU) planets.Comment: 12 pages, 3 figure
    corecore