111 research outputs found

    YOUMARES ā€“ A Conference from and for YOUng MARine RESearchers

    Get PDF
    YOUMARES is an annual early-career scientist conference series. It is an initiative of the German Society for Marine Research (DGM) and takes place in changing cities of northern Germany. The conference series is organized in a bottom-up structure: from and for YOUng MARine RESearchers. In this chapter, we describe the concept of YOUMARES together with its historical development from a single-person initiative to a conference venue of about 200 participants. Furthermore, the three authors added some personals experiences and insights, what YOUMARES means to them

    YOUMARES 8 ā€“ Oceans Across Boundaries: Learning from each other

    Get PDF
    This open access book presents the proceedings volume of the YOUMARES 8 conference, which took place in Kiel, Germany, in September 2017, supported by the German Association for Marine Sciences (DGM). The YOUMARES conference series is entirely bottom-up organized by and for YOUng MARine RESearchers. Qualified early career scientists moderated the scientific sessions during the conference and provided literature reviews on aspects of their research field. These reviews and the presentersā€™ conference abstracts are compiled here. Thus, this book discusses highly topical fields of marine research and aims to act as a source of knowledge and inspiration for further reading and research

    YOUMARES 9 - The Oceans: Our Research, Our Future

    Get PDF
    This open access book summarizes peer-reviewed articles and the abstracts of oral and poster presentations given during the YOUMARES 9 conference which took place in Oldenburg, Germany, in September 2018. The aims of this book are to summarize state-of-the-art knowledge in marine sciences and to inspire scientists of all career stages in the development of further research. These conferences are organized by and for young marine researchers. Qualified early-career researchers, who moderated topical sessions during the conference, contributed literature reviews on specific topics within their research field

    Describing Digital IT Consulting Services:The DITCOS Ontology Proposal and its Evaluation

    Get PDF
    The digital transformation of the consulting sector has recently gained momentum due to the Covid-19 pandemic. In particular, the areas of financial and insurance services are receiving strong attention from digitization researchers. However, the field of IT consulting itself evaded the attention of scientists. Moreover, despite the heavy use of digital technologies such as on-line conferencing and digital collaboration, the actual consulting process itself has hardly changed. This indicates the weaknesses of IT consulting as a field in establishing true digital business models and consulting service delivery processes. The present paper makes a twofold contribution to the domain of digitization of the IT consulting domain. First, it introduces the DITCOS-O ontology for semantic description of digital IT consulting services. Second, the DITCOS-DN description notation is derived from DITCOS-O, as a new approach to ontology-based definition of domain specific languages. Then, DITCOS-DN is used to describe different real-world services. The result is the analysis of the coverage of real-world service and the comprehensibility of their digitally described service model representations with the help of IT consulting practitioners.</p

    Visual Description ofĀ Digital IT Consulting Services Using DITCOS-DN:Proposal andĀ Evaluation ofĀ aĀ Graphical Editor

    Get PDF
    The digital transformation of the IT consulting domain recently gained momentum due to the Covid-19 pandemic. However, the range of IT consulting services that are fully digital is still very limited. Plus, there are no standardized and established methods for describing digital IT consulting services, nor there is any suitable tooling for digital IT consulting service provisioning. The present work aims to reduce this gap by contributing to establishing a well-defined approach to formally describing digital IT consulting services that could possibly be a candidate for standardization. Building upon (i) the ontology DITCOS-O, which provides the semantic basis for our approach, and (ii) the YAML-based description notation DITCOS-DN, which we leverage to describe digital IT consulting service models, we propose a graphical, web-based editor (called DITCOS-ModEd) to simplify service model maintenance. Following a design science based research process, we developed a prototype and empirically evaluated its applicability with the help of IT consultants. This first evaluation allowed us to identify some limitations and to plan specific improvements, both to the underlying artifacts DITCOS-O and DITCOS-DN, as well as to DITCOS-ModEd itself.</p

    Proteomic fingerprinting enables quantitative biodiversity assessments of species and ontogenetic stages in Calanus congeners (Copepoda, Crustacea) from the Arctic Ocean

    Get PDF
    Species identification is pivotal in biodiversity assessments and proteomic fingerprinting by MALDI-TOF mass spectrometry has already been shown to reliably identify calanoid copepods to species level. However, MALDI-TOF data may contain more information beyond mere species identification. In this study, we investigated different ontogenetic stages (copepodids C1ā€“C6 females) of three co-occurring Calanus species from the Arctic Fram Strait, which cannot be identified to species level based on morphological characters alone. Differentiation of the three species based on mass spectrometry data was without any error. In addition, a clear stage-specific signal was detected in all species, supported by clustering approaches as well as machine learning using Random Forest. More complex mass spectra in later ontogenetic stages as well as relative intensities of certain mass peaks were found as the main drivers of stage distinction in these species. Through a dilution series, we were able to show that this did not result from the higher amount of biomass that was used in tissue processing of the larger stages. Finally, the data were tested in a simulation for application in a real biodiversity assessment by using Random Forest for stage classification of specimens absent from the training data. This resulted in a successful stage-identification rate of almost 90%, making proteomic fingerprinting a promising tool to investigate polewards shifts of Atlantic Calanus species and, in general, to assess stage compositions in biodiversity assessments of Calanoida, which can be notoriously difficult using conventional identification methods

    Cascading effects of calanoid copepod functional groups on the biological carbon pump in the subtropical South Atlantic

    Get PDF
    Life strategies, ecophysiological performances and diel vertical migration (DVM) of zooplankton key species affect the efficiency and strength of the biological carbon pump (BCP). However, it is unclear to what extent different functional groups affect the BCP. Depth-stratified day and night samples (0-800 m) from the subtropical South Atlantic were analyzed focusing on the calanoid copepod community. Calanoid abundance, biomass distribution and species-specific impact on the passive (fecal pellets) and active (via DVM) vertical flux of carbon were determined. Species were assigned to different migrant groups where, their contributions were estimated by using the proportion of the migratory community instead of simple day-night differences in biomass. This novel approach leads to more robust flux estimates, particularly for small sample sizes. According to migration ranges and day/night residence depth, functional groups were characterized, i.e. small- and large-scale epipelagic and mesopelagic migrants. Epipelagic small-scale migrants transported respiratory (1.5 mg C m-2 d-1) and fecal pellet (1.1 mg C m-2 d-1) carbon from the upper to the lower epipelagic zone, where the latter can fuel the microbial loop, and thus deep chlorophyll maxima, or be ingested by other zooplankton. Large-scale migrants actively transported up to 10.5 mg C m-2 d-1 of respiratory carbon from the epipelagic layer into the twilight zone. The majority was transported by Pleuromamma borealis (5.7 mg C m-2 d-1) into the upper mesopelagic. In addition, up to 8.0 mg C m-2 d-1 was potentially egested as fecal material by large-scale zone shifters. Mesopelagic migrants transported respiratory (0.2 mg C m-2 d-1) and fecal pellet carbon (0.1 mg C m-2 d-1) even deeper into the ocean. Community consumption of migrants in the epipelagic layer during the night was 98 mg C m-2 d-1, while non-migrants consumed 98-208 mg C m-2 d-1 in the epipelagic zone, with a potential subsequent egestion of 29-62 mg C m-2 d-1. This carbon may fuel omnivorous-detritivorous feeding, the microbial loop and/or may sink as fecal pellets. This case study shows how calanoid functional groups mediate carbon fluxes in the subtropical South Atlantic Ocean and demonstrates how detailed community analyses can elucidate the complexity of pelagic carbon budgets

    Determination of the in vivo structural DNA loop organization in the genomic region of the rat albumin locus by means of a topological approach

    Get PDF
    Nuclear DNA of metazoans is organized in supercoiled loops anchored to a proteinaceous substructure known as the nuclear matrix (NM). DNA is anchored to the NM by non-coding sequences known as matrix attachment regions (MARs). There are no consensus sequences for identification of MARs and not all potential MARs are actually bound to the NM constituting loop attachment regions (LARs). Fundamental processes of nuclear physiology occur at macromolecular complexes organized on the NM; thus, the topological organization of DNA loops must be important. Here, we describe a general method for determining the structural DNA loop organization in any large genomic region with a known sequence. The method exploits the topological properties of loop DNA attached to the NM and elementary topological principles such as that points in a deformable string (DNA) can be positionally mapped relative to a position-reference invariant (NM), and from such mapping, the configuration of the string in third dimension can be deduced. Therefore, it is possible to determine the specific DNA loop configuration without previous characterization of the LARs involved. We determined in hepatocytes and B-lymphocytes of the rat the DNA loop organization of a genomic region that contains four members of the albumin gene family
    • ā€¦
    corecore