
Visual Description of Digital IT Consulting
Services Using DITCOS-DN: Proposal
and Evaluation of a Graphical Editor

Meikel Bode(B) , Maya Daneva , and Marten J. van Sinderen

Department of Semantics, Cybersecurity and Services, University of Twente,
Drienerlolaan 5, 7522 NB Enschede, The Netherlands
{m.bode,m.daneva,m.j.vansinderen}@utwente.nl

https://www.utwente.nl/en/eemcs/scs

Abstract. The digital transformation of the IT consulting domain
recently gained momentum due to the Covid-19 pandemic. However, the
range of IT consulting services that are fully digital is still very limited.
Plus, there are no standardized and established methods for describing
digital IT consulting services, nor there is any suitable tooling for digital
IT consulting service provisioning. The present work aims to reduce this
gap by contributing to establishing a well-defined approach to formally
describing digital IT consulting services that could possibly be a can-
didate for standardization. Building upon (i) the ontology DITCOS-O,
which provides the semantic basis for our approach, and (ii) the YAML-
based description notation DITCOS-DN, which we leverage to describe
digital IT consulting service models, we propose a graphical, web-based
editor (called DITCOS-ModEd) to simplify service model maintenance.
Following a design science based research process, we developed a proto-
type and empirically evaluated its applicability with the help of IT con-
sultants. This first evaluation allowed us to identify some limitations and
to plan specific improvements, both to the underlying artifacts DITCOS-
O and DITCOS-DN, as well as to DITCOS-ModEd itself.

Keywords: Digital transformation · IT consulting · Service ontology ·
Service description · Virtualization · Consulting platform · Graphical
editor · DITCOS-O · DITCOS-DN · DITCOS-ModEd · Design
science · YAML

1 Introduction

During the Covid-19 pandemic the digital transformation (DT) of the IT con-
sulting (ITC) domain gained momentum. The core of the ITC business is to
advise clients on how to digitally transform their respective processes and busi-
nesses models. Gartner defines ITC services to be “. . . advisory services that help
clients assess different technology strategies and, in doing so, align their technol-
ogy strategies with their business or process strategies. These services support
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
T. P. Sales et al. (Eds.): EDOC 2022 Workshops, LNBIP 466, pp. 113–128, 2023.
https://doi.org/10.1007/978-3-031-26886-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26886-1_7&domain=pdf
http://orcid.org/0000-0001-7156-6851
http://orcid.org/0000-0001-7359-8013
http://orcid.org/0000-0001-7118-1353
https://doi.org/10.1007/978-3-031-26886-1_7


114 M. Bode et al.

customers’ IT initiatives by providing strategic, architectural, operational and
implementation planning” [7, term: ‘it consulting’].

In this work we use the terms digitization, digitalization, and digital trans-
formations in line with the definitions of Gartner. Digitization is the conversion
of physical resources to digital representations; digitalization is the use of digital
resources within IT systems; and digital transformation refers to digitalization in
the context of business processes in ITC [7, terms: ‘digitization’, ‘digitalization’,
‘digital transformation’].

However, digital ITC services and suitable tools for the digital provision of
these services are still rare. We use the term digital ITC service as defined in [3]:
“Digital IT consulting services are technology-based consulting services repre-
sented by standardized, modularized, re-combinable, reusable, and customizable
service assets that carry specific service commitments and are provided either in
an automated, hybrid, or manual mode by human and/or technical agents or in a
self-service manner and are instantiated, delivered, monitored, and orchestrated
by digital consulting platforms.” [3].

In the literature of digital ITC, to the best of our knowledge there are here-
only a small number of examples, such as the eConsulting Store provided by
Werth et al. (2016) and the customer-tailored web-based self-service project
assessment solution provided by Nissen et al. (2019) [10,13]. These artifacts
have in common that they are tailored to a special problem context and do
not aim on solving issues such as semantic standardization, modularization, or
reusability as we identified to be necessities regarding the digital transformation
of ITC [3].

To address these gaps in our recent research, we have lately contributed two
artifacts [4]: (1) DITCOS-O, an ontology covering relevant concepts of digital
ITC, and (2) DITCOS-DN, a formal description notation based on DITCOS-O
providing a YAML syntax for service model definition. DITCOS-O constitutes
an ontological sound basis to build upon. DITCOS-DN consumes these concepts
and acts as a kind of ‘programming language’ to define ITC service models that
are understandable for humans as well as interpretable by technical systems,
such as digital ITC platforms.

With the current paper we build upon the published artifacts [4] DITCOS-O
and DITCOS-DN and contribute a new artifact, namely the editor DITCOS-
ModEd that supports end users to easily describe DITCOS-DN-based service
models web-based and graphically. Our editor was empirically evaluated for
suitability and usefulness by means of a two-step evaluation study, including
perception-based research and experiments.

The remaining paper is structured as follows. Section 2 presents our research
goals. Section 3 is on background and related work. Section 4 is on our research
process. Section 5 describes our application of design science in order to create
and evaluate our prototype editor. Section 6 discusses our results and Sect. 7
concludes.



Visual Description of Digital IT Consulting Services Using DITCOS-DN 115

2 Research Goals

As stated in the introduction, this article leverages our previously published
results [4], namely the ontology DITCOS-O and the description notation
DITCOS-DN. Both were empirically evaluated [4] with practitioners in a study
that investigated the understandability of the YAML-based DITCOS-DN nota-
tion. Our evaluation results indicated that manual maintenance of DITCOS-O
models using DITCOS-DN is well-supported by existing tools, since we assured
automatic syntax checking, code completion and code formatting by means of
integrated development environments (IDEs). However, during our evaluation
it became apparent that even if good tool support for the textual creation of
DITCOS-O service models described in DITCOS-DN exists, this might not be
the preferred method from the practitioners’ point of view. In fact, it became
clear to us that practitioners would much more prefer working with a visual
service description editor over using a tool for textual descriptions. Moreover,
by means of a graphical editor, we believe we will create an important scientific
instrument, which will be extremely useful and necessary for us in the context
of our short-term future research activities especially in collaboration with prac-
titioners. With this in mind, we set out the following goals with the present
work:

1. To provide a graphical editor for the maintenance of DITCOS-O service mod-
els to be described in DITCOS-DN.

2. To apply experimentally the graphical editor in a real-world context with the
participation of practitioners and to evaluate the suitability and usefulness
of the solution in order to collect feedback for improvement of the underly-
ing artifacts DITCOS-O and DITCOS-DN, as well as the graphical editor
DITCOS-ModEd.

3 Background and Related Work

There are two streams of related work that are relevant for this paper: pub-
lications on service description approaches and on graphical service modelling.
Regarding service description, the existing approaches are of two types: ontology-
based and textual approaches using frameworks like IT Infrastructure Library
(ITIL). As this research adopts an ontology-based approach, in what follows we
provide related work concerning approaches of this type. One example approach
is LinkedUSDL [5]. LinkedUSDL (Universal Service Description Language) was
designed as an upper ontology with the aim to cover all relevant service contexts
and concepts [5]. It uses the Resource Description Framework (RDF) to describe
concepts based on triples, using the structure subject → predicate → object.
LinkedUSDL follows the linked data principles [6] in the sense that it requires
each element of the triple to be an Uniform Resource Identifier (URI), which, in
the optimal case, points to additional content related to the respective RDF ele-
ment. LinkedUSDL was organized into different sub-ontologies that complement
and build upon each other.



116 M. Bode et al.

Next, regarding graphical service modeling, an example is OBELIX [1], an
ontology-based approach that helps to describe real-world services and ser-
vice bundles based on the flow of resources and generated value (value webs).
OBELIX defines service elements that have input and output interfaces, each
of which supports an arbitrary number of ports. Output ports connect to input
ports, while multiple service elements could form service bundles.

While searching for related work for the purpose of this research, we found
that even though numerous approaches exist in the literature on technical service
or real-world service description, we were not able to find approaches dedicated
to the description of digitalized real-world ITC services provided through digital
consulting platforms. We noticed that either the approaches aim on being as
generic as possible (LinkedUSDL) and require complex RDF based descriptions
or mainly focus on value flow, such as OBELIX.

hasInbound
ResourceHandler

hasService
Commitment

hasOutputChannel hasInputChannel

AtomicService

hasService

ComplexService

fulfillsBusinessRole
Agent

requiresCapability

transportsResource

Channel

ResourceHandler

consumes
Capability

Capability

consumesResource

generatesResource
hasServiceCommitment

ExecutionFlavor

hasSupporting
BusinessRoleInvolvement

Service
Commitment

Resource

Flavor
Business

PartnerFlavor

Business
RoleFlavor

ServiceCommitment
ExecutionFlavor

Service

InputChannel

hasOutbound
ResourceHandler

OutputChannel

receivesResource Outbound
ResourceHandler

providesResource

Inbound
ResourceHandler

Technological
Capability

Knowledge
Capabilityprovides

KnowledgeCapability

HumanAgent
provides

TechnologicalCapability

Technological
Agent

hasBusiness
PartnerFlavor

hasBusiness
RoleFlavor

BusinessRole

objectPropertyrdfs:subClassOf
Core Concept

hasResponsible
BusinessRoleInvolvment

Fig. 1. The DITCOS-O and DITCOS-DN core concepts

Unlike the existing ontology-based approaches, with DITCOS-O and the cor-
responding YAML-based description notation DITCOS-DN, we want to provide
a notation that aims on covering relevant core concepts of the ITC domain (see
Fig. 1 how the core concepts relate), being easy to learn, to understand, and
to use by practitioners (IT consultants), and is at the same time interpretable
by systems (see Listing 1 for an simplified, reduced and invalid example. For a
full example see [4]). It is meant to describe ITC services that are digitally pro-
vided through digital consulting platforms. The provisioning process might be
either (1) only aided by helping agents, e.g., IT consultants, to conduct certain
activities, (2) orchestrate incorporated agents, such as consultants, clients, or
technical systems, or (3) fully automate the service provisioning process. To the
best of our knowledge, none of the approaches in the literature covers this.



Visual Description of Digital IT Consulting Services Using DITCOS-DN 117

1 ditcosModel:
2 metadata: [id, name, version, description, author, entryService]
3 businessRoles: [businesRoleA, businessRoleB, ...]
4 resources: [resourceA, resourceB, ...]
5 services: [atomicServiceA, ..., complexServiceA, ...]

Listing 1. Simplified Example of a DITCOS-DN Service Model

4 Our Research Process

This section explains and motivates the process used to develop the DITCOS-
ModEd artifact. We note that this work is part of a larger research project and
builds upon already contributed artifacts [4]. Our research process adopted the
design science (DS) research methodology of [11]. We chose it, because DS is rec-
ommended to research contexts such as ours where solutions (called ‘artifacts’)
are designed to counter industry-relevant problems and issues [11]. Following
Peffers et al. [11], our research process consists of the stages: (1) problem identi-
fication, (2) definition of objectives, (3) design and development, (4) demonstra-
tion, (5) evaluation, and (6) communication. In the following section we report
on our execution of these stages, except stage six which is covered by the overall
paper implicitly.

5 Designing the DITCOS-ModEd Graphical Editor

5.1 Problem Identification

In our recently published work [4], we already created and evaluated DITCOS-
O service models using the YAML-based notation DITCOS-DN. These kind of
service models are stored in a service repository (SR) to be later consumed by
a digital ITC platform [2]. A central part of the platform should be an editor
that supports textual (YAML-based) as well as graphical creation of DITCOS-O
service models described using DITCOS-DN (see Fig. 2). We emphasize that the
SR and the digital ITC platform are subject of our immediate future research.

DITCOS-
ModEd

Digital IT
Consulting
Platform

part of

DITCOS-O
Ontology

DITCOS-DN
Description

Notation
consumes

based on

Service
Description

instance ofinterprets generates

Service
Repository

part of

manages

Fig. 2. Interplay of our research artifacts

Even though graphical service model creation is not technically required, as
all descriptive power is provided by DITCOS-DN, the practical application of the



118 M. Bode et al.

textual modeling approach remains more complex and technical as it needs to
be. Hence, we decided to provide the possibility to graphically create DITCOS-
DN-based service models with the help of an appropriate, web-based editor. By
providing this graphical editor, we also aim to increase its possible adoption by
practitioners who may not be familiar with programming languages and have
more of a business focus. It is worthwhile noting that our decision to provide
a graphical and web-based editor component is also consistent with the archi-
tectural requirements identified in our previous exploratory study focused on
practitioners’ requirements elicitation [2]. We refer to a subset of these require-
ments in column ‘Source’ in Table 1.

5.2 Definition of Design Objectives

Our two goals for this research were stated in Sect. 2. Linked to them, we defined
the following objectives in form of functional and non-functional requirements
[9]. These requirements listed in Table 1 are then later to be used during the
evaluation of our newly proposed editor. We assigned to each requirement in
Table 1 an identifier (ID), a name, a description, a type (either functional or
non-functional), and the source we collected the requirement from.

Table 1. Functional and non-functional requirements for DITCOS-ModEd

ID Name Description Type Source

R1 Web-based Build the editor using web-based technologies NF [2]
R2 Component-

based
Design the editor to be built from reusable components NF

R3 External
Lookups

Enhance JSON-Schema based value lookups to support
web-services

F [4]

R4 CRUD
Support

Support creation, reading, updating, and deleting service
models

F [2]

R5 Graphical
View

Support the graphical rendering of service models and
component interconnection

F

R6 YAML View Support the YAML code inspection F
R7 DITCOS-O

Coverage
Support concepts of the DITCOS-O ontology expressible in
DITCOS-DN description notation, such as Atomic Service,
Complex Service, Business Role, Capability, Resource,
Service Commitment

F

5.3 Design and Development

This section briefly describes the architecture and the design we chose for our
proposed editor as well as the tools we used for development. Below we present
the elements included in our design and the choices we made in regard to each
element.



Visual Description of Digital IT Consulting Services Using DITCOS-DN 119

Editor Architecture. Based on the software design pattern model-view--
controller (MVC) [12] we structure the editor artifact into three layers: (1) pre-
sentation, (2) business logic, and (3) data access. The data access layer consumes
an externally provided data services layer. These layers will be discussed in the
next sections in more detail. Overall, the graphical editor will be implemented
as a standalone prototype application that is not yet embedded into a larger
architecture as we depicted in [2]. The reason for this is, that we mainly want
to test the graphical modeling approach of DITCOS-DN and the generation of
valid YAML-based service descriptions. The integration of DITCOS-ModEd into
the overall architecture will therefore be covered in our future research.

Presentation Layer. Important requirements on the graphical editor are
web-based and component-based design. Today, web-applications follow either
the backend-rendering, the frontend-rendering, or a hybrid approach. For our
implementation we decided to go for the frontend-rendering approach using
the REACT framework, because it is a recent framework and the main author
already has experience using it. We checked other options, such as Vue or Angu-
larJS but decided against it as this would have meant to learn a new framework.

The loading and execution of a REACT application is initiated after the
page that references the REACT JavaScript-based logic was transferred to the
browser. The JavaScript logic then renders the entire web-application document
object model (DOM) dynamically and manages subsequent page updates and
data acquisition by executing HTTP requests on demand. REACT aims on the
design and implementation of simple and independent components which can be
combined to build more complex applications. The REACT components render
out HTML5 compliant code by directly manipulating the DOM. For styling the
HTML elements cascading style sheets (CSS) are being used. We used the com-
mon and widely-used web component theme ‘Material Design’ for our REACT
components. We decomposed the prototype into 17 independent REACT com-
ponents that work together. All components are described in Table 2.

Business Logic Layer. Next to the presentation layer and the associated
presentation logic, REACT applications contain their required business logic.
This is due to the fact, that the web-application is self-contained. All application
logic gets loaded during the initialization phase after the stub of the application
has been transferred from the web server to the browser. Upon initialization,
the REACT App component (see Table 2) gets executed, which itself triggers
initialization and execution of all other components in the REACT component
hierarchy. All component executions load their required data either individually
or shared from remote sources, which are usually provided by the server that also
serves the web-application stub and its logic. Additional business logic might be
externalized to the server side and exposed by web-based API to consuming web-
applications, such as duplicate checks or other kind of data validations before
being persisted to a store. This kind of APIs often provides common or shared
functionality that can be used by different (web) applications.



120 M. Bode et al.

Table 2. REACT components of DITCOS-ModEd

Name Description

App Represents the central component of an REACT application. It embeds the
ModelManager, ModelView, and the ModelEditor top-level components

ModelManager A top-level component that represents the interface to existing DITCOS-O
service models and supports their creation, deletion, and loading

ModelViews A top-level component that embeds the components GraphicalView and
YAMLEditor

ModelEditor A top-level component that embeds the components ModelMedatadata,
BusinessRoles, Resources, and Services. It provides the functionality to persist
the currently loaded model

GraphicalView Provides the graphical representation of the defined DITCOS-O service model
currently loaded in form of a directed graph consisting of nodes and edges. It is
based on the external REACT component REACTFlow. It supports
interactions such as zooming in and out, shifting the graphicalized graph
around, the selection of nodes and edges. It also provides a MiniMap
component that represents a minimized version of the whole graph for quick
navigation

YAMLEditor Provides the textual representation of the currently loaded DITCOS-O service
model. It is based on the external REACT code editor component Monaco. It
supports line numbering, folding, formatting, coloring, and indent

ModelMedatadata Represents input elements for model metadata, such as id, name, description,
author, and version

BusinessRoles Represents all business roles defined by the model and supports their creation,
deletion, and modification by linking to BusinessRoleDetailsDialog component

BusinessRole-
DetailsDialog

Provides input elements to model a business role and link to the capabilities
that constitutes it

Resources Represents all resources defined by the model and supports their creation,
deletion, and modification by linking to ResourceDetailsDialog component

ResourceDetails-
Dialog

Provides input elements to model a resource generated, consumed, or updated
by service commitments of defined atomic services

Services Represents all atomic and complex services defined by the model and supports
their creation, deletion, and modification by linking to
AtomicServiceDetailsDialog and ComplexServiceDetailsDialog components

AtomicService-
DetailsDialog

Provides input elements to model an atomic service and its service
commitments by linking to ServiceCommitmentDetailsDialog component

ServiceCommit-
mentDetailsDialog

Provides input elements to model a service commitment and to refer to
resources by linking to InvolvedResourcesDetailsDialog component

InvolvedResource-
DetailsDialog

Provides input elements to refer to a certain defined resource and its type of
involvement in the related service commitment

ComplexService-
DetailsDialog

Provides input elements to model a complex service and to link to its
constituting atomic and complex services by linking to
InvolvedServiceDetailsDialog component

InvolvedService-
DetailsDialog

Provides input elements to refer to a certain defined atomic or complex service
and to define its dependencies on other services

Data Access Layer. The data access of REACT applications usually is realized
by consuming REST-based APIs exposed by the server side. Other HTTP-based
communication protocols, such das GraphQL or OData are also common. The
data exchange format can vary, but nowadays mostly JSON formatted messages



Visual Description of Digital IT Consulting Services Using DITCOS-DN 121

are interchanged with incorporating the data service layer. For our editor we
chose a combination of REST-API and JSON as message format.

Data Service Layer. The data services used by our prototype are provided by
a JavaScript based server component. All data entities used are represented by
corresponding REST-API endpoints which support the CRUD pattern by incor-
porating different HTTP methods, such as GET, PUT, PATCH, and DELETE.
For our prototype we use a simple server component without applying extended
validations. This is sufficient, as building such an API would be delegated to a
dedicated service repository which would be part of a larger digital ITC platform
architecture as proposed in [2].

Fig. 3. DITCOS-ModEd showing the available service models and the graphical view
as well as the details of the currently loaded service model (left to right).

5.4 Proof-of-Concept Study Demonstration

We set up a proof-of-concept study [14] to explore the practical applicability
of our proposed editor from the perspective of IT consultants. The underlying
motivation for this was to have a very first prototype demonstration and collec-
tion of first feedback from practitioners. We wanted to assure that our prototype
design work goes in the right direction and that the editor matches the possible
expectations of practitioners. To this end, DITCOS-ModEd was demonstrated
by the first author to five practitioners. Each joined a one-on-one 60min long
session with the researcher. The five participants in our proof-of-concept study
are all working for a midsize IT consultancy in Germany. Three were technical
experts, while two were business process analysis experts with relatively little
technical background. The areas in which the five participants were consulting
their clients varied from SAP Finance, SAP Business Intelligence, SAP Logistics,
Business Strategy, and Microsoft Azure Cloud.



122 M. Bode et al.

Proof-of-Concept Session Setup. We prepared the editor and run it locally
at the computer of the first author using the IDE built-in features. Every session
started with an empty and clean editor instance.

Session Execution. We conducted all sessions remotely via Microsoft Teams
due to the lockdown work-from-home policies. We prepared a note form which
we used to take notes during the each session. For all sessions we executed the
following process described in Table 3.

Table 3. Session execution phases

Phase and Description

Phase 1 (~5 min) We welcomed the practitioner and explained what are the aims of the session
are and how we will proceed
Phase 2 (~15 min) We introduced DITCOS-O and DITCOS-DN shortly to the practitioner to
make him familiar with the concepts of ITC service description. In particular the concepts of a
DITCOS-O service model, such as atomic vs. complex service, service commitments, business
roles, capabilities, and resources (see Fig. 1)
Phase 3 (~10 min) We introduced the practitioner to the DITCOS-ModEd editor and referred
to the concepts presented in phase 2. Furthermore, we explained the user interface and its
functionality to the practitioners. Using an example DITCOS-O service model, we showed how the
previously introduced concepts can be modeled using the editor and how the graphical modeling
reflects to the resulting YAML-based DITCOS-DN textual service description
Phase 4 (~25 min) We asked the practitioner to model a selected ITC service using the editor.
This was done with the help the first researcher concerning the use of the editor’s interface and
navigation. Each expert did the conceptual modeling work himself, while the researcher took over
the handling of the interface. This was since the session would have required a much longer
training of the practitioner at this early stage of the editor’s development. During this phase we
continuously discussed the current state of the DITCOS-DN model and inspected the resulting
YAML code. During this very short phase of 25 min, the aim was to give the practitioner a feeling
for creating DITCOS-O service models using the editor with the goal of gathering his feedback
which we would consider for inclusion in our future design cycles of the editor. A complete
realization of a DITCOS-O service model would not have been possible within the time frame of
25 min
Phase 5 (~5 min) This phase was to wrap-up and let the practitioner tell us about his
experience with the editor. We asked for feedback related to (i) the graphical user interface (GUI),
(ii) the usability and concepts, and (iii) general suggestions and comments on possibilities to
extend the prototype. The last included possible ‘nice to have’ integration to other tools that
consultants use. In addition to that, we also noted our own (researcher) suggestions and
observations during the sessions

5.5 Collected Feedback and Suggestions

All five of the practitioners liked the representation and the Look&Feel of the
editor. One had the impression that it supported all the relevant DITCOS-O
concepts well (see Fig. 1). Another practitioner stated that the interaction and
working process with the GUI was particularly fluent. In addition, we received
seven feedback items (see Table 4) to our notation concepts and components of
the editor and four suggestions (see Table 5) for improvement of the artifacts.



Visual Description of Digital IT Consulting Services Using DITCOS-DN 123

Table 4. Feedback on usability and concepts

ID Concept/Component Name and Description

F1 AtomicServiceKind,
BusinessRoleKind,
Capability

Insufficient Coverage Realistic modeling requires more choices
of the named concepts. Add more kinds of each concept for
subsequent experiments

F2 BusinessRole Agent Occupation Mode Add an attribute to the business role
concept that indicates the ‘agent occupation mode’ to indicate
that a certain role must be fulfilled by a dedicated agent that
cannot have other roles assigned within the same service
commitment

F3 BusinessRole Capability Level Modeling levels of a capability is not possible
in the sense that a certain business role requires ‘SAP FI Senior’
and ‘SAP ABAP Intermediate’ skill levels. Actually one can only
define the overall level of a business role by assigning the
capability ‘Knowledge. Experience.(Junior, Intermediate, Senior)’

F4 BusinessRole Decision Power Modeling of ‘decision power’ of a business role is
not possible. This might be relevant if a business role must make
decisions during the service provisioning. This flag seems to be rel-
evant in cases necessitating the modeling of client-side roles.
Example: A client subject matter expert is required to decide to go
for a certain customization variant related to the chart of accounts

F5 ServiceCommitment Inline Definition of Concepts The current version of the editor
requires that the service modeler defines all resources and business
roles before starting with the modeling of service commitments of
atomic services. This does not feel ‘natural’ because, sometimes
required resources or business roles only become obvious during
the service modeling itself. In the current editor’s version, the user
would have to abort and step out of the service modeling and
create additional resources or business roles and then re-enter the
service modeling

F6 ServiceCommitment Planned Duration Add ‘planned duration’ as attribute to the
service commitment concept. Based on this, it would become
possible to calculate estimated time consumption for a DITCOS-O
service model. (Added by researcher)

F7 GraphicalView Drill Down Add a recursive drill down functionality to the
service nodes

5.6 Reflection on How the Editor Reaches Its Goals
and Requirements

An important part of the DS research process, according to Peffers et al. [11]
includes an analytical reflection on how the designed artifact meets its goals set
at the beginning of the research. This section reports our analytically reflection
on the results obtained throughout the design of our editor and the proof-of-
concept evaluation. The reflection is in two regards: (1) how the editor meets
our main research goals defined in Sect. 2, and (2) how it meets the additional
design objectives formulated in Sect. 5.2 as requirements.



124 M. Bode et al.

Table 5. Suggestions and comments regarding nice-to-have extensions

ID Name and Description

S1 BPMN Diagram Add a BPMN diagram to graphicalize a DITCOS-O service
model as BPMN process

S2 Gantt Diagram Add a Gantt diagram to graphicalize the sequence/parallel
dependencies of a DITCOS-O service model

S3 Integrated Help System The editor requires an integrated help system to guide
the service modeler continuously

S4 Service Reuse Avoidance of duplicated names for model entities. This is
important when services shall be reused in complex services

S5 Tags Allow arbitrary tags for all model concepts to assign non-service-related
information. Predefine tags to avoid duplicates

Results Pertaining Our Research Goals. We formulated two main research
goals. We present the results in the next paragraphs:

Provide an Editor for DITCOS-O Service Models. We aimed on deliv-
ering an editor to graphically create DITCOS-O models defined in DITCOS-
DN. We were able to achieve this goal. DITCOS-O services models created
using the DITCOS-ModEd editor cover all DITCOS-DN concepts, such as
atomic and complex service, service commitment, business role, capability,
and resource. We checked the completeness and syntactic correctness for each
of the mentioned concepts as well as the interaction of the concepts in the
context of a DITCOS-O service model.
Proof-of-Concept Evaluation of the Artifact. We presented the
DITCOS-ModEd editor to five practitioners in an experimental setting where
each session last around 60min. Beside an introduction to the DITCOS-O,
DITCOS-DN artifacts, as well as the editor, we modeled jointly with the
practitioner an ITC service, without the aim of being complete. Our goal was
to utilize the features and functionalities of the editor and not to create a
fully elaborated DITCOS-O service model. During the modeling process we
constantly discussed the activity and collected feedback as well as suggestions
from the practitioners.

Results Pertaining the Design Objectives

R1: Web-based. We built DITCOS-ModEd using REACT, one of the latest
JavaScript frameworks to build recent web-applications. REACT applications
are self-contained in sense of logic and consume web-based APIs, such as
REST. With our artifact we were able to fulfill this requirement.
R2: Component-based. Our artifact is based 17 independent and reusable
REACT components. All components consume a common data layer, that
represents the currently active DITCOS-O service model expressed in
DITCOS-DN. All components interact with their respective part of the
DITCOS-DN description. This requirement could be fulfilled.



Visual Description of Digital IT Consulting Services Using DITCOS-DN 125

R3: External Lookups. This requirement is twofold. First, we provide
certain value completion functionality to the different REACT compo-
nents. Examples for value helps are AtomicServiceKinds, BusinessRoleKinds,
ResourceKinds, or Capabilities (see Fig. 1). If a certain component gets acti-
vated it consumes an external REST API, that provides e.g., a constant list of
capabilities as a response. This list gets consumed by the REACT component
to provide a value help to the user. This first perspective could be fulfilled.
Second, another perspective relates to dynamically created instances of con-
cepts, such as atomic or complex services, business roles, or resources. Typi-
cally, these instances would have been created by other users and within other
DITCOS-ModEd instances. They would have been persisted in a central ser-
vice repository and provided to DITCOS-ModEd by appropriate REST-APIs.
This functionality will only be supported by a later prototype of DITCOS-
ModEd. The reason is, that we are at an early stage of the artifact develop-
ment. Hence, our focus is on the required basic functionality to support the
creation of DITCOS-O service models. A later prototype will support reuse
of defined concept instances, what was also suggested (S4) by a practitioner
(see Sect. 5.5). Overall we were able to fulfill this requirement partly.
R4: CRUD Support. With the current prototype of DITCOS-ModEd
we fulfill this requirement for the following DITCOS-O primary concepts:
atomic and complex service, service commitment, and business role. For these
concepts we created dedicated REACT components, that support creation,
update and delete completely (see Table 2). The existing components enable
users to create feature-complete DITCOS-O service models. Nevertheless,
with the current prototype we decided not to support CRUD for instances of
supporting concepts, such as AtomicServiceKind, BusinessRoleKind, Capabil-
ity, ResourceKind, ResourceInvolvementType MIMEType, ServiceCommit-
mentKind, and ServiceCommitmentExecutionFlavor (see Fig. 1). Instead, we
decided to focus only on the creation of DITCOS-O service models and the
required primary concepts and to assume the existence of the named sup-
porting concepts. We simply provide instances of the supporting concepts
in form of constant lists, as already described. In other words, for these
supporting concepts, we only provide ‘read’ functionality with the current
DITCOS-ModEd prototype. In light of this discussion, we could say that this
requirement could be only partly fulfilled.
R5: Graphical View. With the current prototype we where able to provide
a sophisticated graphical view on DITCOS-DN based DITCOS-O services
models already. The view supports nodes, edges, zooming, change of view-
port just to mention some features. Related to DITCOS-O service models
anyhow, we only support a subset of the concepts with the current proto-
type. These are namely atomic and complex services as well as the edges to
connect subsequent concepts (see Fig. 1). Nevertheless, the current prototype
of the editor can provide a graphical representation of the two core concepts
and also supports the required visualization of hierarchical organized complex
services, which may contain sub-services which themselves could be complex
services again. Based on this reasoning, we think that overall we fulfilled this
requirement partly.



126 M. Bode et al.

R6: YAML View. The current prototype of DITCOS-ModEd supports
the complete rendering of DITCOS-DN based DITCOS-O service models in
YAML representation. The YAML viewer supports code formatting, code-
indent, and coloring. The current implementation only supports one-way
YAML rendering based on an in-memory representation of the corresponding
DITCOS-DN. Changes to the YAML code therefore, do not trigger changes
to the REACT components dynamically. As this was not our aim with this
early prototype of DITCOS-ModEd, we fulfilled this requirement completely.
R7: DITCOS-O Coverage. With the current prototype of the DITCOS-
ModEd we realized a DITCOS-O coverage regarding to DITCOS-DN based
service models a 100% completeness. Therefore, we conclude that we achieved
this requirement completely.

6 Discussion of the Findings in Our First Evaluation

Our proof-of-concept study with the ITC practitioners showed that the current
prototype of DITCOS-ModEd, even though it is at early stage, already was
recognized as a helpful tool that supports the modeling process of DITCOS-
O service models compared to the pure textual modeling by manually coding
the necessary YAML using DITCOS-DN description notation. The feedback on
GUI and the Look&Feel of DITCOS-ModEd is clear (see Sect. 5.5). Anyhow, the
feedback on concepts we collected, as well as our own experience with DITCOS-
ModEd made clear, that the editor is not yet ready to be transferred to the
consulting practice. While this was expected, our proof-of-concept study indi-
cated that the proposed editor did meet our research goals and requirements (to
a very large extent).

Our immediate future research that builds upon DITCOS-ModEd must
explicitly respond to the feedback (F1) related to insufficient coverage regarding
to the concepts of AtomicServiceKind, BusinessRoleKind, and Capability (see
Sect. 5.5). These concepts are consumed during the modeling process at different
stages. For the current prototype it was sufficient, to only provide a small set of
instances of each concept, as we only aimed on supporting the general modeling
approach and not to be complete. During follow-up empirical evaluation we will
ensure that the set of instances of these concepts are more complete.

Feedback F1 has no direct impact on the underlying artifacts DITCOS-O
and DITCOS-DN, as only instances of these concepts are required, and they can
be created at runtime as required. However, feedback points F2 to F6 directly
affect the concepts BusinessRole and ServiceCommitment. These points require
changes to the underlying ontology DITCOS-O and adjustments related to the
description notation DITCOS-DN.

Related to the DITCOS-ModEd, we collected one suggestion (F7) namely, to
add a drill down functionality to the graphical representation of the underlying
DITCOS-DN description. From our point of view this makes absolutely sense.
During the design cycles we experimented with different levels of details we added
to the view. To ensure clarity, we opted for a rather reduced view of the model
concepts. A drill-down to display further relevant details seems very useful here.



Visual Description of Digital IT Consulting Services Using DITCOS-DN 127

The general suggestions we received where also very helpful and interesting.
In particular, the improvement ideas to add a BPMN and a Gantt representation
to the underlying DITCOS-DN representation of the DITCOS-O service model
seem worthy of attention. The question arises, which further requirements and
additions to DITCOS-O/DN would be necessary for this?

Even though our aim is to provide an easy-to-use service description notation,
the concepts might not always be self-explaining. Adding an integrated help
system (S3) to DITCOS-ModEd is a desirable goal.

The practitioners’ suggestions to reuse defined services (S4) and to allow arbi-
trary tags attached to all concepts, are also very good. As one participant indi-
cated, service reuse is considered very important. Anyhow, we suggest ‘concept
reuse’ as a more general improvement. In future prototypes of DITCOS-ModEd
we plan to support the reuse of concepts in the sense, that concepts defined by
a certain user can be referenced from other concepts created by another user.
A prerequisite to support this feature is to implement a service repository as
depicted and described in our digital ITC platform architecture proposal [2].
We will evaluate how to tackle the feedback items F2-F7 and suggestions S1-S5
during future research.

Finally, we reflected on the limitations of our empirical findings. We involved
five practitioners and clearly it might be the case that if we could have included
many more, it would have been possible to collect feedback points different from
those that we have now. However, we note that we selected participants with
exposure in a variety of consulting areas (ranging from finance, to logistics to
cloud). Their perceptions and experiences of the 60min sessions overlapped,
specifically regarding the mater that they liked the editor and thought it indeed
filled a gap in the consulting practice. We think that it might well be possi-
ble that similar perceptions might come if we possibly include in our sessions
other consultants who might share the context in which our participants work.
Consultants working in client organizations in the same business sector, imple-
menting the same technology and following the same consulting approach, might
well have similar conceptual modeling experiences and similar needs of an editor
such as our participants do. As Ghaisas et al. indicate, similar contexts might
possibly create similar work experiences [8]. However, as we plan to create more
prototypes of the editor, a more empirical and longer-term evaluation is needed
to fully assess its applicability, usefulness, and usability in a real-world context.
This is our priority in the future.

7 Conclusions and Future Work

With this work we contributed the web-based, graphical editor DITCOS-ModEd
to create DITCOS-O service models described using the DITCOS-DN descrip-
tion notation. Following the DS methodology [11], we developed a prototype
of the editor and evaluated it in a proof-of-concept experimental study with
ITC practitioners. The latter revealed some limitations of DITCOS-ModEd and
enabled us to collect valuable and interesting feedback and improvement sug-
gestions to enhance both the underlying artifacts DITCOS-O and DITCOS-DN,



128 M. Bode et al.

as well as the editor DITCOS-ModEd itself. Our reflection on the limitations
helped us formulate immediate future research steps towards creating the next
and improved prototype of our proposed editor.

References

1. Akkermans, H., Baida, Z., Gordijn, J., Peiia, N., Altuna, A., Laresgoiti, I.: Value
webs: using ontologies to bundle real-world services. IEEE Intell. Syst. 19(4), 57–66
(2004). https://doi.org/10.1109/MIS.2004.35

2. Bode, M., Daneva, M., van Sinderen, M.J.: Digital IT consulting service provision-
ing – a practice-driven platform architecture proposal. In: 25th IEEE International
Enterprise Distributed Object Computing Workshop. The Gold Coast, Australia
(2021). https://doi.org/10.1109/EDOCW52865.2021.00056

3. Bode, M., Daneva, M., van Sinderen, M.J.: Characterising the digital transfor-
mation of IT consulting services - results from a systematic mapping study. IET
Softw. (2022). https://doi.org/10.1049/sfw2.12068

4. Bode, M., Daneva, M., van Sinderen, M.J.: Describing digital IT consulting ser-
vices: the ditcos ontology proposal and its evaluation. In: 2022 IEEE 24th Confer-
ence on Business Informatics (CBI), Amsterdam, The Netherlands (2022). https://
doi.org/10.1109/CBI54897.2022.00029

5. Cardoso, J., Pedrinaci, C.: Evolution and overview of linked USDL. In: Nóvoa,
H., Drăgoicea, M. (eds.) IESS 2015. LNBIP, vol. 201, pp. 50–64. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-14980-6_5

6. Frank, A.G., Mendes, G.H., Ayala, N.F., Ghezzi, A.: Servitization and Industry 4.0
convergence in the digital transformation of product firms: a business model inno-
vation perspective. Technol. Forecast. Soc. Change 141, 341–351 (2019). https://
doi.org/10.1016/j.techfore.2019.01.014

7. Gartner: Gloassary. https://www.gartner.com/en/information-technology/
glossary (2022)

8. Ghaisas, S., Rose, P., Daneva, M., Sikkel, K., Wieringa, R.J.: Generalizing by
similarity: lessons learnt from industrial case studies. In: 2013 1st International
Workshop on Conducting Empirical Studies in Industry (CESI), pp. 37–42. IEEE,
San Francisco, CA, USA (2013). https://doi.org/10.1109/CESI.2013.6618468

9. Lauesen, S.: Software Requirements: Styles and Techniques. Addison-Wesley,
Boston (2002)

10. Nissen, V. (ed.): Advances in Consulting Research. CMS, Springer, Cham (2019).
https://doi.org/10.1007/978-3-319-95999-3

11. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science
research methodology for information systems research. J. Manag. Inf. Syst. 24(3),
45–77 (2007). https://doi.org/10.2753/MIS0742-1222240302

12. Starke, G.: Effektive Softwarearchitekturen, 7th edn. Hanser, München (2015)
13. Werth, D., Greff, T., Scheer, A.W.: Consulting 4.0 - Die Digitalisierung der

Unternehmensberatung. HMD Praxis der Wirtschaftsinformatik 53(1), 55–70
(2016). https://doi.org/10.1365/s40702-015-0198-1

14. Wieringa, R., Daneva, M.: Six strategies for generalizing software engineering theo-
ries. Sci. Comput. Program. 101, 136–152 (2015). https://doi.org/10.1016/j.scico.
2014.11.013

https://doi.org/10.1109/MIS.2004.35
https://doi.org/10.1109/EDOCW52865.2021.00056
https://doi.org/10.1049/sfw2.12068
https://doi.org/10.1109/CBI54897.2022.00029
https://doi.org/10.1109/CBI54897.2022.00029
https://doi.org/10.1007/978-3-319-14980-6_5
https://doi.org/10.1016/j.techfore.2019.01.014
https://doi.org/10.1016/j.techfore.2019.01.014
https://www.gartner.com/en/information-technology/glossary
https://www.gartner.com/en/information-technology/glossary
https://doi.org/10.1109/CESI.2013.6618468
https://doi.org/10.1007/978-3-319-95999-3
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.1365/s40702-015-0198-1
https://doi.org/10.1016/j.scico.2014.11.013
https://doi.org/10.1016/j.scico.2014.11.013

	Visual Description of Digital IT Consulting Services Using DITCOS-DN: Proposal and Evaluation of a Graphical Editor
	1 Introduction
	2 Research Goals
	3 Background and Related Work
	4 Our Research Process
	5 Designing the DITCOS-ModEd Graphical Editor
	5.1 Problem Identification
	5.2 Definition of Design Objectives
	5.3 Design and Development
	5.4 Proof-of-Concept Study Demonstration
	5.5 Collected Feedback and Suggestions
	5.6 Reflection on How the Editor Reaches Its Goals and Requirements

	6 Discussion of the Findings in Our First Evaluation
	7 Conclusions and Future Work
	References




