497 research outputs found

    Social Integration and High Achieving Columbus City Students: A Comprehensive Analysis

    Get PDF

    Detection of Multi-drug Resistant \u3cem\u3eEscherichia coli\u3c/em\u3e in the Urban Waterways of Milwaukee, WI

    Get PDF
    Urban waterways represent a natural reservoir of antibiotic resistance which may provide a source of transferable genetic elements to human commensal bacteria and pathogens. The objective of this study was to evaluate antibiotic resistance of Escherichia coli isolated from the urban waterways of Milwaukee, WI compared to those from Milwaukee sewage and a clinical setting in Milwaukee. Antibiotics covering 10 different families were utilized to determine the phenotypic antibiotic resistance for all 259 E. coli isolates. All obtained isolates were determined to be multi-drug resistant. The E. coli isolates were also screened for the presence of the genetic determinants of resistance including ermB (macrolide resistance), tet(M) (tetracycline resistance), and β-lactamases (blaOXA, blaSHV, and blaPSE). E. coli from urban waterways showed a greater incidence of antibiotic resistance to 8 of 17 antibiotics tested compared to human derived sources. These E. coli isolates also demonstrated a greater incidence of resistance to higher numbers of antibiotics compared to the human derived isolates. The urban waterways demonstrated a greater abundance of isolates with co-occurrence of antibiotic resistance than human derived sources. When screened for five different antibiotic resistance genes conferring macrolide, tetracycline, and β-lactam resistance, clinical E. coli isolates were more likely to harbor ermB and blaOXA than isolates from urban waterway. These results indicate that Milwaukee’s urban waterways may select or allow for a greater incidence of multiple antibiotic resistance organisms and likely harbor a different antibiotic resistance gene pool than clinical sources. The implications of this study are significant to understanding the presence of resistance in urban freshwater environments by supporting the idea that sediment from urban waterways serves as a reservoir of antibiotic resistance

    Estimating malaria parasite density: assumed white blood cell count of 10,000/μl of blood is appropriate measure in Central Ghana.

    Get PDF
    BACKGROUND: White blood cells count (WBCc) is a bedrock in the estimation of malaria parasite density in malaria field trials, interventions and patient management. White blood cells are indirectly and relatively used in microscopy to estimate the density of malaria parasite infections. Due to frequent lack of facilities in some malaria-endemic countries, in order to quantify WBCc of patients, an assumed WBCc of 8.0 X 10(9)/L has been set by the World Health Organization to help in estimating malaria parasite densities. METHODS: This comparative analysis study, in Central Ghana, compiled laboratory data of 5,902 Plasmodium falciparum malaria parasite positive samples. Samples were obtained from consented participants of age groups less than five years. Full blood counts (FBC) of participants' samples were analysed using the ABX Micros 60 Haematology Analyzer. Blood slides were read by two competent microscopists to produce concordant results. All internal and external quality control measures were carried out appropriately. Parasite densities were calculated using participants' absolute WBCc and assumed WBCc of 5,000 to 10,000 per microlitre of blood. RESULTS: From the 5,902 Pf malaria positive samples, the mean (SD) WBCc and geometric mean parasite density were 10.4 (4.6) × 10(9)/L and 7,557/μL (95% CI 7,144/μL to 7,994/μL) respectively. The difference in the geometric mean parasite densities calculated using absolute WBCs and compared to densities with assumed WBCs counts were significantly lower for 5.0 × 10(9)/L; 3,937/μL, 6.0 × 10(9)/L; 4,725/μL and 8.0 × 10(9)/L; 6,300/μL. However, the difference in geometric mean parasite density, 7,874/μL (95 % CI, 7,445/μL to 8,328/μL), with assumed WBCc of 10.0 × 10(9)/L was not significant. CONCLUSION: Using the assumed WBCc of 8.0 X 10(9)/L or lower to estimate malaria parasite densities in Pf infected children less than five years old could result in significant underestimation of parasite burden. Assumed WBCc of 10.0 × 10(9)/L at 95 % CI of geometric mean of parasite density statistically agreed with the parasite densities produce by the absolute WBCc of participants. The study suggests where resources are limited, use of assumed WBCc of 10.0 × 10(9)/L of blood to estimate malaria parasite density in central Ghana. Preferably, absolute WBCc should be used in drug efficacy and vaccine trials

    Helicobacter pylori and cancer among adults in Uganda

    Get PDF
    Data from Africa on infection with Helicobacter pylori (H. pylori) are sparse. Therefore, as part of an epidemiological study of cancer in Uganda, we investigated the prevalence and determinants of antibodies against H. pylori among 854 people with different cancer types and benign tumours. Patients were recruited from hospitals in Kampala, Uganda, interviewed about various demographic and lifestyle factors and tested for antibodies against H. pylori. In all patients combined, excluding those with stomach cancer (which has been associated with H. pylori infection), the prevalence of antibodies was 87% (723/833) overall, but declined with increasing age (p = 0.02) and was lower among people who were HIV seropositive compared to seronegative (p <0.001). Otherwise, there were few consistent epidemiological associations. Among those with stomach cancer, 18/21 (86%) had anti-H. pylori antibodies (odds ratio 0.8, 95% confidence intervals 0.2–2.9, p = 0.7; estimated using all other patients as controls, with adjustment for age, sex and HIV serostatus). No other cancer site or type was significantly associated with anti-H. pylori antibodies. The prevalence of H. pylori reported here is broadly in accord with results from other developing countries, although the determinants of infection and its' role in the aetiology of gastric cancer in Uganda remain unclear

    Multiscale multiagent architecture validation by virtual instruments in molecular dynamics experiments

    Get PDF
    International audienceA multiagent architecture is proposed in order to build a physics laboratory in virtual reality. Thermodynamics experiments are used for its validation. Classical numerical resolution of thermodynamics problems comes up against the number and variability of boundary conditions. Based on molecular dynamics, a multiagent approach is proposed, resting upon agent spatial and temporal autonomy. This approach grants each particle a capacity to identify its environment using both its own clock and perceptive area. Individual molecular properties are injected into thermal and mechanical models, and macroscopic gas behaviors can be detected and quantified by 3D virtual instruments, created in order to involve the user into the simulation. In order to assess its ability to simulate thermodynamic experiments, our method is applied to classical situations, such as the Joule-Gay Lussac experiment or the maxwellian relaxation in a hard-sphere gas. The simulated gas behavior is in good agreement with theoretical results for gases without interaction. Taking into account the volume of the molecules, our method also allows to quantify the mean free path and the average collision time for Neon and Xenon hard-sphere gases at equilibrium. Dynamic speed relaxation from uniform to maxwellian distribution is simulated successfully, and molecular covolume are also measured with such virtual gases

    Origins of Mass

    Get PDF
    Newtonian mechanics posited mass as a primary quality of matter, incapable of further elucidation. We now see Newtonian mass as an emergent property. Most of the mass of standard matter, by far, arises dynamically, from back-reaction of the color gluon fields of quantum chromodynamics (QCD). The equations for massless particles support extra symmetries - specifically scale, chiral, and gauge symmetries. The consistency of the standard model relies on a high degree of underlying gauge and chiral symmetry, so the observed non-zero masses of many elementary particles (WW and ZZ bosons, quarks, and leptons) requires spontaneous symmetry breaking. Superconductivity is a prototype for spontaneous symmetry breaking and for mass-generation, since photons acquire mass inside superconductors. A conceptually similar but more intricate form of all-pervasive (i.e. cosmic) superconductivity, in the context of the electroweak standard model, gives us a successful, economical account of WW and ZZ boson masses. It also allows a phenomenologically successful, though profligate, accommodation of quark and lepton masses. The new cosmic superconductivity, when implemented in a straightforward, minimal way, suggests the existence of a remarkable new particle, the so-called Higgs particle. The mass of the Higgs particle itself is not explained in the theory, but appears as a free parameter. Earlier results suggested, and recent observations at the Large Hadron Collider (LHC) may indicate, the actual existence of the Higgs particle, with mass mH125m_H \approx 125 GeV. In addition to consolidating our understanding of the origin of mass, a Higgs particle with mH125m_H \approx 125 GeV could provide an important clue to the future, as it is consistent with expectations from supersymmetry.Comment: Invited review for the Central European Journal of Physics. This is the supplement to my 2011 Solvay Conference talk promised there. It is adapted from an invited talk given at the Atlanta APS meeting, April 2012. 33 pages, 6 figures. v2: Added update section bringing in the CERN discovery announcemen

    Criticality in strongly correlated fluids

    Full text link
    In this brief review I will discuss criticality in strongly correlated fluids. Unlike simple fluids, molecules of which interact through short ranged isotropic potential, particles of strongly correlated fluids usually interact through long ranged forces of Coulomb or dipolar form. While for simple fluids mechanism of phase separation into liquid and gas was elucidated by van der Waals more than a century ago, the universality class of strongly correlated fluids, or in some cases even existence of liquid-gas phase separation remains uncertain.Comment: Proceedings of Scaling Concepts and Complex Systems, Merida, Mexic

    One-Step Synthesis of Unsymmetrical N-Alkyl-N′-aryl Perylene Diimides

    Get PDF
    An efficient and facile protocol for the synthesis of unsymmetrical N-alkyl-N′-aryl perylene diimides is reported that circumvents the need for multiple reaction steps. A number of unsymmetrical perylene diimides containing a solubilizing swallowtail alkyl group and a variety of substituted aryl groups can be prepared in a single step from a simple mixture of amines

    Notes on Conformal Invisibility Devices

    Get PDF
    As a consequence of the wave nature of light, invisibility devices based on isotropic media cannot be perfect. The principal distortions of invisibility are due to reflections and time delays. Reflections can be made exponentially small for devices that are large in comparison with the wavelength of light. Time delays are unavoidable and will result in wave-front dislocations. This paper considers invisibility devices based on optical conformal mapping. The paper shows that the time delays do not depend on the directions and impact parameters of incident light rays, although the refractive-index profile of any conformal invisibility device is necessarily asymmetric. The distortions of images are thus uniform, which reduces the risk of detection. The paper also shows how the ideas of invisibility devices are connected to the transmutation of force, the stereographic projection and Escheresque tilings of the plane

    T-cell subpopulations αβ and γδ in cord blood of very preterm infants : The influence of intrauterine infection

    Get PDF
    Open Access: This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are creditedPreterm infants are very susceptible to infections. Immune response mechanisms in this group of patients and factors that influence cord blood mononuclear cell populations remain poorly understood and are considered insufficient. However, competent immune functions of the cord blood mononuclear cells are also described. The aim of this work was to evaluate the T-cell population (CD3+) with its subpopulations bearing T-cell receptor (TCR) αβ or TCR γδ in the cord blood of preterm infants born before 32 weeks of gestation by mothers with or without an intrauterine infection. Being a pilot study, it also aimed at feasibility check and assessment of an expected effect size. The cord blood samples of 46 infants age were subjected to direct immunofluorescent staining with monoclonal antibodies and then analyzed by flow cytometry. The percentage of CD3+ cells in neonates born by mothers with diagnosis of intrauterine infection was significantly lower than in neonates born by mothers without infection (p = 0.005; Mann-Whitney U test). The number of cells did not differ between groups. Infection present in the mother did not have an influence on the TCR αβ or TCR γδ subpopulations. Our study contributes to a better understanding of preterm infants' immune mechanisms, and sets the stage for further investigations.Peer reviewedFinal Published versio
    corecore