6,661 research outputs found

    Relativity Theory May not Have the Last Word on the Nature of Time: Quantum Theory and Probabilism

    Get PDF
    Two radically different views about time are possible. According to the first, the universe is three dimensional. It has a past and a future, but that does not mean it is spread out in time as it is spread out in the three dimensions of space. This view requires that there is an unambiguous, absolute, cosmic-wide "now" at each instant. According to the second view about time, the universe is four dimensional. It is spread out in both space and time - in space-time in short. Special and general relativity rule out the first view. There is, according to relativity theory, no such thing as an unambiguous, absolute cosmic-wide "now" at each instant. However, we have every reason to hold that both special and general relativity are false. Not only does the historical record tell us that physics advances from one false theory to another. Furthermore, elsewhere I have shown that we must interpret physics as having established physicalism - in so far as physics can ever establish anything theoretical. Physicalism, here, is to be interpreted as the thesis that the universe is such that some unified "theory of everything" is true. Granted physicalism, it follows immediately that any physical theory that is about a restricted range of phenomena only, cannot be true, whatever its empirical success may be. It follows that both special and general relativity are false. This does not mean of course that the implication of these two theories that there is no unambiguous cosmic-wide "now" at each instant is false. It still may be the case that the first view of time, indicated at the outset, is false. Are there grounds for holding that an unambiguous cosmic-wide "now" does exist, despite special and general relativity, both of which imply that it does not exist? There are such grounds. Elsewhere I have argued that, in order to solve the quantum wave/particle problem and make sense of the quantum domain we need to interpret quantum theory as a fundamentally probabilistic theory, a theory which specifies how quantum entities - electrons, photons, atoms - interact with one another probabilistically. It is conceivable that this is correct, and the ultimate laws of the universe are probabilistic in character. If so, probabilistic transitions could define unambiguous, absolute cosmic-wide "nows" at each instant. It is entirely unsurprising that special and general relativity have nothing to say about the matter. Both theories are pre-quantum mechanical, classical theories, and general relativity in particular is deterministic. The universe may indeed be three dimensional, with a past and a future, but not spread out in four dimensional space-time, despite the fact that relativity theories appear to rule this out. These considerations, finally, have implications for views about the arrow of time and free will

    Is the quantum world composed of propensitons?

    Get PDF
    In this paper I outline my propensiton version of quantum theory (PQT). PQT is a fully micro-realistic version of quantum theory that provides us with a very natural possible solution to the fundamental wave/particle problem, and is free of the severe defects of orthodox quantum theory (OQT) as a result. PQT makes sense of the quantum world. PQT recovers all the empirical success of OQT and is, furthermore, empirically testable (although not as yet tested). I argue that Einstein almost put forward this version of quantum theory in 1916/17 in his papers on spontaneous and induced radiative transitions, but retreated from doing so because he disliked the probabilistic character of the idea. Subsequently, the idea was overlooked because debates about quantum theory polarised into the Bohr/Heisenberg camp, which argued for the abandonment of realism and determinism, and the Einstein/Schrödinger camp, which argued for the retention of realism and determinism, no one, as a result, pursuing the most obvious option of retaining realism but abandoning determinism. It is this third, overlooked option that leads to PQT. PQT has implications for quantum field theory, the standard model, string theory, and cosmology. The really important point, however, is that it is experimentally testable. I indicate two experiments in principle capable of deciding between PQT and OQT

    Beebots-a-lula, Where's My Honey?: Design Fictions and Beekeeping

    Get PDF
    The honey bee is a powerful cultural motif that remains an important symbol for the future. Their role as pollinators, alongside a myriad of other species, is critical to the continued diets of humankind. This Future Scenario explores a possible near future where human intervention poses new risks to their survival. Drawing on folklore and contemporary beekeeping practices, Mr Shore's Downfall tells a tale of discovery and loss as a young beekeeper is introduced to the world of honey bees. Three imagined artefacts are revealed through the story and discussed with consideration of their cultural context, desirability and relation to socio-economic factors. Themes from Mr Shore's Downfall are examined, and the potential of writing practice for design fiction practitioners is considered

    Is Quantum Mechanics Compatible with an Entirely Deterministic Universe?

    Get PDF
    A b s t r a c t It will be argued that 1) the Bell inequalities are not equivalent with those inequalities derived by Pitowsky and others that indicate the Kolmogorovity of a probability model, 2) the original Bell inequalities are irrelevant to both the question of whether or not quantum mechanics is a Kolmogorovian theory as well as the problem of determinism, whereas 3) the Pitowsky type inequalities are not violated by quantum mechanics, hence 4) quantum mechanics is a Kolmogorovian probability theory, therefore, 5) it is compatible with an entirely deterministic universe.Comment: 15 pages, (compressed and uuencoded) Postscript (188 kb), preprint 94/0

    Tunneling mechanism of light transmission through metallic films

    Get PDF
    A mechanism of light transmission through metallic films is proposed, assisted by tunnelling between resonating buried dielectric inclusions. This is illustrated by arrays of Si spheres embedded in Ag. Strong transmission peaks are observed near the Mie resonances of the spheres. The interaction among various planes of spheres and interference effects between these resonances and the surface plasmons of Ag lead to mixing and splitting of the resonances. Transmission is proved to be limited only by absorption. For small spheres, the effective dielectric constant can be tuned to values close to unity and a method is proposed to turn the resulting materials invisible.Comment: 4 papges, 5 figure

    Geometric origin of excess low-frequency vibrational modes in amorphous solids

    Full text link
    Glasses have a large excess of low-frequency vibrational modes in comparison with crystalline solids. We show that such a feature is a necessary consequence of the geometry generic to weakly connected solids. In particular, we analyze the density of states of a recently simulated system, comprised of weakly compressed spheres at zero temperature. We account for the observed a) constancy of the density of modes with frequency, b) appearance of a low-frequency cutoff, and c) power-law increase of this cutoff with compression. We predict a length scale below which vibrations are very different from those of a continuous elastic body.Comment: 4 pages, 2 figures. Argument rewritten, identical result

    Condensation of a tetrahedra rigid-body libration mode in HoBaCo4O7 : the origin of phase transition at 355 K

    Full text link
    Rietveld profiles, Moessbauer spectra and x-ray absorption fine structure (XAFS) were analyzed through the structural phase transition at Ts = 355 K in HoBaCo4O7. Excess of the oxygen content over O7 was avoided via annealing the samples in argon flow at 600 degree C. Space groups (S.G.) Pbn21c and P63mc were used to refine the structure parameters in the low- and high-temperature phases, respectively. Additionally, the Cmc21 symmetry was considered as a concurrent model of structure of the low-temperature phase. In the high-temperature phase, severe anisotropy of thermal motion of the major part of the oxygen atoms was observed. This anisotropic motion turns to be quenched as the sample is cooled below Ts. The variation of quadrupole splitting near Ts is not similar to a steplike anomaly frequently seen at the charge-ordering transition. We observe instead a dip-like anomaly of the average quadrupole splitting near Ts. Narrow distribution of the electric field gradient (EFG) over different cobalt sites is observed and explained on the basis of point-charge model. XAFS spectra show no evidence of significant difference between YBaCo4O7 (T > Ts) and HoBaCo4O7 (T < Ts). The origin of the transition at Ts is ascribed to the condensation of the libration phonon mode associated with the rigid-body rotational movements of the starlike tetrahedral units, the building blocks of kagome network. It is shown that the condensation of the libration mode is not compatible with translation symmetry for the hexagonal S.G., but compatible for the orthorhombic S.G. The orthorhombic lattice parameters and EFG components (Vxx, Vyy, Vzz) vary smoothly with temperature at approaching Ts and closely follow each other.Comment: 13 figure

    Evaluation of Year-round Forage Management Systems for Spring- and Fall-Calving Beef Cows

    Get PDF
    Stored feeds make up almost half the cost of production for cow–calf enterprises in Iowa. Therefore, any reduction in the amount of stored feeds needed to maintain cows through the winter can have an impact on overall costs of maintaining the herd. Two resources that may be used to reduce the use of stored feeds are corn-crop residues and stockpiled perennial forages, which may be grazed during the winter. The objective of this experiment was to design and evaluate grazing systems to utilize such resources
    corecore