11,739 research outputs found

    Oxygen Cost of Recreational Horse-Riding in Females

    Get PDF
    Version: as accepted for publication.BACKGROUND: The purpose of this study was to characterize the physiological demands of a riding session comprising different types of recreational horse riding in females. METHODS: Sixteen female recreational riders (aged 17 to 54 years) completed an incremental cycle ergometer exercise test to determine peak oxygen consumption (VO₂peak) and a 45-minute riding session based upon a British Horse Society Stage 2 riding lesson (including walking, trotting, cantering and work without stirrups). Oxygen consumption (VO₂), from which metabolic equivalent (MET) and energy expenditure values were derived, was measured throughout. RESULTS: The mean VO₂ requirement for trotting/cantering (18.4 ± 5.1 ml·kg⁻¹·min⁻¹; 52 ± 12% VO₂peak; 5.3 ± 1.1 METs) was similar to walking/trotting (17.4 ± 5.1 ml·kg⁻¹·min⁻¹; 48 ± 13% VO₂peak; 5.0 ± 1.5 METs) and significantly higher than for work without stirrups (14.2 ± 2.9 ml·kg⁻¹·min⁻¹; 41 ± 12% VO₂peak; 4.2 ± 0.8 METs) (P = .001). CONCLUSIONS: The oxygen cost of different activities typically performed in a recreational horse riding session meets the criteria for moderate intensity exercise (3-6 METs) in females, and trotting combined with cantering imposes the highest metabolic demand. Regular riding could contribute to the achievement of the public health recommendations for physical activity in this population

    A mechanistic model of connector hubs, modularity, and cognition

    Full text link
    The human brain network is modular--comprised of communities of tightly interconnected nodes. This network contains local hubs, which have many connections within their own communities, and connector hubs, which have connections diversely distributed across communities. A mechanistic understanding of these hubs and how they support cognition has not been demonstrated. Here, we leveraged individual differences in hub connectivity and cognition. We show that a model of hub connectivity accurately predicts the cognitive performance of 476 individuals in four distinct tasks. Moreover, there is a general optimal network structure for cognitive performance--individuals with diversely connected hubs and consequent modular brain networks exhibit increased cognitive performance, regardless of the task. Critically, we find evidence consistent with a mechanistic model in which connector hubs tune the connectivity of their neighbors to be more modular while allowing for task appropriate information integration across communities, which increases global modularity and cognitive performance

    Different Scenarios for Critical Glassy Dynamics

    Full text link
    We study the role of different terms in the NN-body potential of glass forming systems on the critical dynamics near the glass transition. Using a simplified spin model with quenched disorder, where the different terms of the real NN-body potential are mapped into multi-spin interactions, we identified three possible scenarios. For each scenario we introduce a ``minimal'' model representative of the critical glassy dynamics near, both above and below, the critical transition lin e. For each ``minimal'' model we discuss the low temperature equilibrium dynamics.Comment: Completely revised version, 8 pages, 5 figures, typeset using EURO-LaTeX, Europhysics Letters (in press

    Theory of hopping conduction in arrays of doped semiconductor nanocrystals

    Full text link
    The resistivity of a dense crystalline array of semiconductor nanocrystals (NCs) depends in a sensitive way on the level of doping as well as on the NC size and spacing. The choice of these parameters determines whether electron conduction through the array will be characterized by activated nearest-neighbor hopping or variable-range hopping (VRH). Thus far, no general theory exists to explain how these different behaviors arise at different doping levels and for different types of NCs. In this paper we examine a simple theoretical model of an array of doped semiconductor NCs that can explain the transition from activated transport to VRH. We show that in sufficiently small NCs, the fluctuations in donor number from one NC to another provide sufficient disorder to produce charging of some NCs, as electrons are driven to vacate higher shells of the quantum confinement energy spectrum. This confinement-driven charging produces a disordered Coulomb landscape throughout the array and leads to VRH at low temperature. We use a simple computer simulation to identify different regimes of conduction in the space of temperature, doping level, and NC diameter. We also discuss the implications of our results for large NCs with external impurity charges and for NCs that are gated electrochemically.Comment: 14 pages, 10 figures; extra schematic figures added; revised introductio

    On the dependence of the avalanche angle on the granular layer thickness

    Full text link
    A layer of sand of thickness h flows down a rough surface if the inclination is larger than some threshold value theta which decreases with h. A tentative microscopic model for the dependence of theta with h is proposed for rigid frictional grains, based on the following hypothesis: (i) a horizontal layer of sand has some coordination z larger than a critical value z_c where mechanical stability is lost (ii) as the tilt angle is increased, the configurations visited present a growing proportion $_s of sliding contacts. Instability with respect to flow occurs when z-z_s=z_c. This criterion leads to a prediction for theta(h) in good agreement with empirical observations.Comment: 6 pages, 2 figure

    Gauss Linking Number and Electro-magnetic Uncertainty Principle

    Full text link
    It is shown that there is a precise sense in which the Heisenberg uncertainty between fluxes of electric and magnetic fields through finite surfaces is given by (one-half \hbar times) the Gauss linking number of the loops that bound these surfaces. To regularize the relevant operators, one is naturally led to assign a framing to each loop. The uncertainty between the fluxes of electric and magnetic fields through a single surface is then given by the self-linking number of the framed loop which bounds the surface.Comment: 13 pages, Revtex file, 3 eps figure

    Key inflammatory pathway activations in the MCI stage of Alzheimer's disease

    Get PDF
    OBJECTIVE: To determine the key inflammatory pathways that are activated in the peripheral and CNS compartments at the mild cognitive impairment (MCI) stage of Alzheimer's disease (AD). METHODS: A cross-sectional study of patients with clinical and biomarker characteristics consistent with MCI-AD in a discovery cohort, with replication in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. Inflammatory analytes were measured in the CSF and plasma with the same validated multiplex analyte platform in both cohorts and correlated with AD biomarkers (CSF Aβ42, total tau (t-tau), phosphorylated tau (p-tau) to identify key inflammatory pathway activations. The pathways were additionally validated by evaluating genes related to all analytes in coexpression networks of brain tissue transcriptome from an autopsy confirmed AD cohort to interrogate if the same pathway activations were conserved in the brain tissue gene modules. RESULTS: Analytes of the tumor necrosis factor (TNF) signaling pathway (KEGG ID:4668) in the CSF and plasma best correlated with CSF t-tau and p-tau levels, and analytes of the complement and coagulation pathway (KEGG ID:4610) best correlated with CSF Aβ42 levels. The top inflammatory signaling pathways of significance were conserved in the peripheral and the CNS compartments. They were also confirmed to be enriched in AD brain transcriptome gene clusters. INTERPRETATION: A cell-protective rather than a proinflammatory analyte profile predominates in the CSF in relation to neurodegeneration markers among MCI-AD patients. Analytes from the TNF signaling and the complement and coagulation pathways are relevant in evaluating disease severity at the MCI stage of AD

    Establishing Observational Baselines for Two δ Scuti Variables: V966 Herculis and V1438 Aquilae

    Get PDF
    We have examined the previously understudied δ Scuti stars V966 Herculis and V1438 Aquilae. We find that V966 Her is a stable pulsator with a refined period of 0.1330302 days with a full V amplitude of 0.096 mag. We also find that V966 Her has an average radial velocity of +7.8 km s-1, a full radial velocity amplitude of 7.6 km s-1, and a v sin i = 63.8 km s-1. For V1438 Aql we report a revised Hipparcos period of 0.1612751 days with a full amplitude of 0.056. The average radial velocity is found to be -43 km s-1, with full amplitude of 9.7 km s-1, and a v sin i = 76.7 km s-1. Due to some anomalies seen in V1438 Aql we feel that a much larger photometric and spectroscopic campaign is required to determine the true nature of this star
    corecore