13 research outputs found

    The EBLM project : III. A Saturn-size low-mass star at the hydrogen-burning limit

    Get PDF
    This work was partially supported by a grant from the Simons Foundation (PI Queloz, grant number 327127).We report the discovery of an eclipsing binary system with mass-ratio q ∼ 0.07. After identifying a periodic photometric signal received by WASP, we obtained CORALIE spectroscopic radial velocities and follow-up light curves with the Euler and TRAPPIST telescopes. From a joint fit of these data we determine that EBLM J0555-57 consists of a sun-like primary star that is eclipsed by a low-mass companion, on a weakly eccentric 7.8-day orbit. Using a mass estimate for the primary star derived from stellar models, we determine a companion mass of 85 ± 4 MJup (0.081 M⊙) and a radius of 0.84+ 0.14 -0.04RJup (0.084 R⊙) that is comparable to that of Saturn. EBLM J0555-57Ab has a surface gravity log g2 =5.50+ 0.03 -0.13 and is one of the densest non-stellar-remnant objects currently known. These measurements are consistent with models of low-mass stars.PostprintPeer reviewe

    The EBLM Project VI. The mass and radius of five low-mass stars in F+M binaries discovered by the WASP survey

    Full text link
    peer reviewedSome M-dwarfs around F-/G-type stars have been measured to be hotter and larger than predicted by stellar evolution models. Inconsistencies between observations and models need addressing with more mass, radius and luminosity measurements of low-mass stars to test and refine evolutionary models. Our aim is to measure the masses, radii and ages of the stars in five low-mass eclipsing binary systems discovered by the WASP survey. We use WASP photometry to establish eclipse-time ephemerides and to obtain initial estimates for the transit depth and width. Radial velocity measurements were simultaneously fitted with follow-up photometry to find the best-fitting orbital solution. This solution was combined with measurements of atmospheric parameters to interpolate evolutionary models and estimate the mass of the primary star, and the mass and radius of the M-dwarf companion. We assess how the best fitting orbital solution changes if an alternative limb- darkening law is used and quantify the systematic effects of unresolved companions. We also gauge how the best-fitting evolutionary model changes if different values are used for the mixing length parameter and helium enhancement. We report the mass and radius of five M-dwarfs and find little evidence of inflation with respect to evolutionary models. The primary stars in two systems are near the ``blue hook'' stage of their post sequence evolution, resulting in two possible solutions for mass and age. We find that choices in helium enhancement and mixing- length parameter can introduce an additional 3-5\,\% uncertainty in measured M-dwarf mass. Unresolved companions can introduce an additional 3-8\% uncertainty in the radius of an M-dwarf, while the choice of limb- darkening law can introduce up to an additional 2\% uncertainty

    Fundamental effective temperature measurements for eclipsing binary stars-III. SPIRou near-infrared spectroscopy and CHEOPS photometry of the benchmark G0V star EBLM J0113+31

    No full text
    P. F. L. Maxted et al.EBLM J0113+31 is a moderately bright (V = 10.1), metal-poor ([Fe/H] ≈−0.3) G0V star with a much fainter M dwarf companion on a wide, eccentric orbit (= 14.3 d). We have used near-infrared spectroscopy obtained with the SPIRou spectrograph to measure the semi-amplitude of the M dwarf’s spectroscopic orbit, and high-precision photometry of the eclipse and transit from the CHEOPS and TESS space missions to measure the geometry of this binary system. From the combined analysis of these data together with previously published observations, we obtain the following model-independent masses and radii: M1 = 1.029 ± 0.025 M⊙, M2 = 0.197 ± 0.003 M⊙, R1 = 1.417 ± 0.014 R⊙, R2 = 0.215 ± 0.002 R⊙. Using R1 and the parallax from Gaia EDR3 we find that this star’s angular diameter is θ = 0.0745 ± 0.0007 mas. The apparent bolometric flux of the G0V star corrected for both extinction and the contribution from the M dwarf (<0.2 per cent) is F⊕,0=(2.62±0.05)×10−9 erg cm−2 s−1. Hence, this G0V star has an effective temperature Teff,1=6124K±40K(rnd.)±10K(sys.)⁠. EBLM J0113+31 is an ideal benchmark star that can be used for ‘end-to-end’ tests of the stellar parameters measured by large-scale spectroscopic surveys, or stellar parameters derived from asteroseismology with PLATO. The techniques developed here can be applied to many other eclipsing binaries in order to create a network of such benchmark stars.CHEOPS is a European Space Agency (ESA) mission in partnership with Switzerland with important contributions to the payload and the ground segment from Austria, Belgium, France, Germany, Hungary, Italy, Portugal, Spain, Sweden, and the United Kingdom. The CHEOPS Consortium would like to gratefully acknowledge the support received by all the agencies, offices, universities, and industries involved. This paper is based on observations obtained at the Canada–France–Hawaii Telescope (CFHT) that is operated from the summit of Maunakea by the National Research Council of Canada, the Institut National des Sciences de l’Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. The observations at the CFHT were performed with care and respect from the summit of Maunakea that is a significant cultural and historic site. This paper is also based on observations obtained with SPIRou, an international project led by Institut de Recherche en Astrophysique et Planétologie, Toulouse, France. PM is grateful to the observatory staff at the CHFT for their help with the planning, execution, and data reduction of the SPIRou data used for this study. This paper is based on observations made with the Nordic Optical Telescope, owned in collaboration by the University of Turku and Aarhus University, and operated jointly by Aarhus University, the University of Turku, and the University of Oslo, representing Denmark, Finland, and Norway, the University of Iceland and Stockholm University at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias. This paper includes data collected by the TESS mission, which are publicly available from the Mikulski Archive for Space Telescopes (MAST) at the Space Telescope Science Institure (STScI). Funding for the TESS mission is provided by the NASA Explorer Program directorate. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. We acknowledge the use of public TESS Alert data from pipelines at the TESS Science Office and at the TESS Science Processing Operations Center. PM acknowledges support from UK Science and Technology Facilities Council (STFC) research grant number ST/M001040/1. NM is supported by STFC grant number ST/S505444/1. SH gratefully acknowledges Centre National d'Études Spatiales (CNES) funding through the grant 837319. SGS acknowledge support from Fundação para a Ciência ea Tecnologia (FCT) through FCT contract nos CEECIND/00826/2018 and POPH/FSE (EC). ACC acknowledges support from STFC consolidated grant numbers ST/R000824/1 and ST/V000861/1, and UKSA grant number ST/R003203/1. YA and MJH acknowledge the support of the Swiss National Fund under grant 200020_172746. MIS acknowledges support from STFC grant number ST/T506175/1. We acknowledge support from the Spanish Ministry of Science and Innovation and the European Regional Development Fund through grants ESP2016-80435-C2-1-R, ESP2016-80435-C2-2-R, PG2018-098153-B-C33, PGC2018-098153-B-C31, ESP2017-87676-C5-1-R, MDM-2017-0737, Unidad de Excelencia Maria de Maeztu-Centro de Astrobiología (INTA-CSIC), as well as the support of the Generalitat de Catalunya/CERCA programme. The MOC activities have been supported by the ESA contract No. 4000124370. SCCB acknowledges support from FCT through FCT contract no. IF/01312/2014/CP1215/CT0004. XB, SC, DG, MF, and JL acknowledge their role as ESA-appointed CHEOPS science team members. ABr was supported by the Swedish National Space Agency (SNSA). This project was supported by the CNES. The Belgian participation to CHEOPS has been supported by the Belgian Federal Science Policy Office (BELSPO) in the framework of the PRODEX Program, and by the University of Liège through an ARC grant for Concerted Research Actions financed by the Wallonia–Brussels Federation. LD is an FRS-FNRS Postdoctoral Researcher. This work was supported by FCT – Fundação para a Ciência e a Tecnologia through national funds and by FEDER through COMPETE2020 – Programa Operacional Competitividade e Internacionalizacão by these grants: UID/FIS/04434/2019, UIDB/04434/2020, UIDP/04434/2020, PTDC/FIS-AST/32113/2017, POCI-01-0145-FEDER- 032113, PTDC/FIS-AST/28953/2017, POCI-01-0145-FEDER-028953, PTDC/FIS-AST/28987/2017, and POCI-01-0145-FEDER-028987, ODSD is supported in the form of work contract (DL 57/2016/CP1364/CT0004) funded by national funds through FCT. B-OD acknowledges support from the Swiss National Science Foundation (PP00P2-190080). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (project FOUR ACES. grant agreement No 724427). It has also been carried out in the frame of the National Centre for Competence in Research PlanetS supported by the Swiss National Science Foundation (SNSF). DE acknowledges financial support from the Swiss National Science Foundation for project 200021_200726. MF and CMP gratefully acknowledge the support of the Swedish National Space Agency (DNR 65/19, 174/18). DG gratefully acknowledges financial support from the CRT Foundation under Grant No. 2018.2323 ‘Gaseous or rocky? Unveiling the nature of small worlds’. MG is an FRS-FNRS (Fund for Scientific Research - Le Fonds de la Recherche Scientifique) Senior Research Associate. KGI is the ESA CHEOPS Project Scientist and is responsible for the ESA CHEOPS Guest Observers Programme. She does not participate in, or contribute to, the definition of the Guaranteed Time Programme of the CHEOPS mission through which observations described in this paper have been taken, nor to any aspect of target selection for the programme. This work was granted access to the HPC resources of MesoPSL financed by the Region Ile de France and the project Equip@Meso (reference ANR-10-EQPX-29-01) of the programme Investissements d’Avenir supervised by the Agence Nationale pour la Recherche. ML acknowledges support of the Swiss National Science Foundation under grant number PCEFP2_194576. GS, GP, IP, LB, VN, and RR acknowledge the funding support from Italian Space Agency (ASI) regulated by ‘Accordo ASI-INAF n. 2013-016-R.0 del 9 luglio 2013 e integrazione del 9 luglio 2015 CHEOPS Fasi A/B/C’. This work was also partially supported by a grant from the Simons Foundation (PI Queloz, grant number 327127). IR acknowledges support from the Spanish Ministry of Science and Innovation and the European Regional Development Fund through grant PGC2018-098153-B- C33, as well as the support of the Generalitat de Catalunya/CERCA programme. GMS acknowledges the support of the Hungarian National Research, Development and Innovation Office (NKFIH) grant K-125015, a PRODEX Institute Agreement between the ELTE Eötvös Loránd University and the European Space Agency (ESA-D/SCI-LE-2021-0025), the Lendület LP2018-7/2021 grant of the Hungarian Academy of Science, and the support of the city of Szombathely. VVG is an FRS-FNRS Research Associate.Peer reviewe

    Analysis of early Science observations with the CHaracterising ExOPlanets Satellite (CHEOPS) using pycheopss

    No full text
    P . F . L. Maxted et al.CHEOPS (CHaracterising ExOPlanet Satellite) is an ESA S-class mission that observes bright stars at high cadence from low-Earth orbit. The main aim of the mission is to characterize exoplanets that transit nearby stars using ultrahigh precision photometry. Here, we report the analysis of transits observed by CHEOPS during its Early Science observing programme for four well-known exoplanets: GJ 436 b, HD 106315 b, HD 97658 b, and GJ 1132 b. The analysis is done using PYCHEOPS, an open-source software package we have developed to easily and efficiently analyse CHEOPS light-curve data using state-of-the-art techniques that are fully described herein. We show that the precision of the transit parameters measured using CHEOPS is comparable to that from larger space telescopes such as Spitzer Space Telescope and Kepler. We use the updated planet parameters from our analysis to derive new constraints on the internal structure of these four exoplanets.CHEOPS is an ESA mission in partnership with Switzerland with important contributions to the payload and the ground segment from Austria, Belgium, France, Germany, Hungary, Italy, Portugal, Spain, Sweden, and the United Kingdom. The CHEOPS Consortium would like to gratefully acknowledge the support received by all the agencies, offices, universities, and industries involved. Their flexibility and willingness to explore new approaches were essential to the success of this mission. PM acknowledges support from Science and Technology Facilities Council (STFC) research grant number ST/M001040/1. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (project FOUR ACES; grant agreement No 724427). This project has been carried out in the frame of the National Centre for Competence in Research PlanetS supported by the Swiss National Science Foundation (SNSF). ACC and TW acknowledge support from STFC consolidated grant number ST/R000824/1. YA and MJH acknowledge the support of the Swiss National Fund under grant 200020_172746. SH gratefully acknowledges Centre National d'Études Spatiales (CNES) funding through the grant 837319. SGS acknowledge support from Fundação para a Ciência e a Tecnologia through FCT contract nr. CEECIND/00826/2018 and POPH/FSE (EC). The Belgian participation to CHEOPS has been supported by the Belgian Federal Science Policy Office (BELSPO) in the framework of the PRODEX Program, and by the University of Liège through an ARC grant for Concerted Research Actions financed by the Wallonia-Brussels Federation. We acknowledge support from the Spanish Ministry of Science and Innovation and the European Regional Development Fund through grants ESP2016-80435-C2-1-R, ESP2016-80435-C2-2-R, PGC2018-098153-B-C33, PGC2018-098153-B-C31, ESP2017-87676-C5-1-R, MDM-2017-0737 Unidad de Excelencia ‘María de Maeztu’- Centro de Astrobiología (INTA-CSIC), as well as the support of the Generalitat de Catalunya/CERCA programme. The MOC activities have been supported by the European Space Agency (ESA) contract No. 4000124370. SCCB acknowledges support from FCT through FCT contracts nr. IF/01312/2014/CP1215/CT0004. XB, SC, DG, MF, and JL acknowledge their role as ESA-appointed CHEOPS science team members. ABr was supported by the SNSA. This project was supported by the CNES. This work was supported by FCT through national funds and by the European Regional Development Fund (FEDER) through COMPETE2020 - Programa Operacional Competitividade e Internacionalização by these grants: UID/FIS/04434/2019; UIDB/04434/2020; UIDP/04434/2020; PTDC/FIS-AST/32113/2017 and POCI-01-0145-FEDER- 032113; PTDC/FIS-AST/28953/2017 and POCI-01-0145-FEDER-028953; PTDC/FIS-AST/28987/2017 and POCI-01-0145-FEDER-028987. ODSD is supported in the form of work contract (DL 57/2016/CP1364/CT0004) funded by national funds through FCT. BOD acknowledges support from the Swiss National Science Foundation (PP00P2-190080). MF and CMP gratefully acknowledge the support of the Swedish National Space Agency (DNR 65/19, 174/18). DG gratefully acknowledges financial support from the CRT Foundation under Grant No. 2018.2323 ‘Gaseousor rocky? Unveiling the nature of small worlds’. MG is an F.R.S.-FNRS Senior Research Associate. This work was granted access to the HPC resources of MesoPSL financed by the Region Ile de France and the project Equip@Meso (reference ANR-10-EQPX-29-01) of the programme Investissements d’Avenir supervised by the Agence Nationale pour la Recherche. This work was also partially supported by a grant from the Simons Foundation (PI Queloz, grant number 327127). Acknowledges support from the Spanish Ministry of Science and Innovation and the European Regional Development Fund through grant PGC2018-098153-B-C33, as well as the support of the Generalitat de Catalunya/CERCA programme. This project has been supported by the Hungarian National Research, Development and Innovation Office (NKFIH) grants GINOP-2.3.2-15-2016-00003, K-119517, K-125015, and the City of Szombathely under Agreement No. 67.177-21/2016. VVG is an F.R.S-FNRS Research Associate. This research was supported in part by the National Science Foundation under Grant No. NSF PHY-1748958. MS acknowledges supported from STFC, grant number ST/T506175/1. The authors acknowledge support from the Swiss NCCR PlanetS and the Swiss National Science Foundation. YA acknowledges the support of the Swiss National Fund under grant 200020_172746. GPi, VNa, GSs, IPa, LBo, and RRa acknowledge the funding support from Italian Space Agency (ASI) regulated by ‘Accordo ASI-INAF n. 2013-016-R.0 del 9 luglio 2013 e integrazione del 9 luglio 2015 CHEOPS Fasi A/B/C’. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. KGI is the ESA CHEOPS Project Scientist and is responsible for the ESA CHEOPS Guest Observers Programme. She does not participate in, or contribute to, the definition of the Guaranteed Time Programme of the CHEOPS mission through which observations described in this paper have been taken, nor to any aspect of target selection for the programme. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme IDs 191.C-0873 (GJ 1132), 198.C-0838 (GJ 1132), 198.C-0169 (HD 106315), and 098.C-0304 (HD 106315). This publication makes use of The Data & Analysis Center for Exoplanets (DACE), which is a facility based at the University of Geneva (CH) dedicated to extrasolar planets data visualization, exchange and analysis. DACE is a platform of the Swiss National Centre of Competence in Research (NCCR) PlanetS, federating the Swiss expertise in Exoplanet research. The DACE platform is available at https://dace.unige.ch. LD is an F.R.S.-FNRS Postdoctoral Researcher. The Belgian participation to CHEOPS has been supported by the Belgian Federal Science Policy Office (BELSPO) in the framework of the PRODEX Program, and by the University of Liège through an ARC grant for Concerted Research Actions financed by the Wallonia-Brussels Federation. A.De. acknowledges support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (project FOUR ACES, grant agreement No. 724427), and from the National Centre for Competence in Research ‘PlanetS’ supported by the Swiss National Science Foundation (SNSF).Peer reviewe

    The Pre-He White Dwarf in the Post-mass Transfer Binary EL CVn

    Get PDF
    EL CVn is the prototype of a class of eclipsing binaries that consist of an A- or F-type main-sequence star and a hot, low-mass, pre-He white dwarf (pre-He WD), the stripped down remains of the former mass donor. Here we present the first direct detection and characterization of the spectrum of the pre-He WD in EL CVn that was made possible through far-UV spectroscopy with the Hubble Space Telescope Cosmic Origins Spectrograph. These spectra straddle the wavelength range where flux dominance shifts from the pre-He WD to the A star. Radial velocities of both components were measured from the far-UV spectra and new optical spectra from the Apache Point Observatory Astrophysical Research Consortium Echelle Spectrograph. We also obtained fast cadence photometry of the eclipses with the pt5m telescope at the Roque de los Muchachos Observatory. A combined analysis of the velocities and light curve yields the component masses and radii. We applied a Doppler tomography algorithm to reconstruct the individual spectra, and we compared these to models to estimate the effective temperatures. The pre-He WD has low mass (0.176 ± 0.004 M ⊙), is small (0.284 ± 0.003 R ⊙), and is relatively hot (11,800 ± 400 K), and these parameters are approximately consistent with predictions for a star stripped through stable mass transfer. The spectral lines of the pre-He WD show that its atmosphere is H-rich, He-depleted, and metal-poor, probably as the result of elemental diffusion that has occurred since mass transfer ceased

    The EBLM project – IX: Five fully convective M-dwarfs, precisely measured with CHEOPS and TESS light curves

    No full text
    Eclipsing binaries are important benchmark objects to test and calibrate stellar structure and evolution models. This is especially true for binaries with a fully convective M-dwarf component for which direct measurements of these stars’ masses and radii are difficult using other techniques. Within the potential of M-dwarfs to be exoplanet host stars, the accuracy of theoretical predictions of their radius and effective temperature as a function of their mass is an active topic of discussion. Not only the parameters of transiting exoplanets but also the success of future atmospheric characterization relies on accurate theoretical predictions. We present the analysis of five eclipsing binaries with low-mass stellar companions out of a subsample of 23, for which we obtained ultra-high-precision light curves using the CHEOPS satellite. The observation of their primary and secondary eclipses are combined with spectroscopic measurements to precisely model the primary parameters and derive the M-dwarfs mass, radius, surface gravity, and effective temperature estimates using the PYCHEOPS data analysis software. Combining these results to the same set of parameters derived from TESS light curves, we find very good agreement (better than 1 per cent for radius and better than 0.2 per cent for surface gravity). We also analyse the importance of precise orbits from radial velocity measurements and find them to be crucial to derive M-dwarf radii in a regime below 5 per cent accuracy. These results add five valuable data points to the mass–radius diagram of fully convective M-dwarfs.ISSN:0035-8711ISSN:1365-296

    Connecting photometric and spectroscopic granulation signals with CHEOPS and ESPRESSO

    No full text
    Context. Stellar granulation generates fluctuations in photometric and spectroscopic data whose properties depend on the stellar type, composition, and evolutionary state. Characterizing granulation is key for understanding stellar atmospheres and detecting planets. Aims. We aim to detect the signatures of stellar granulation, link spectroscopic and photometric signatures of convection for mainsequence stars, and test predictions from 3D hydrodynamic models. Methods. For the first time, we observed two bright stars (Teff = 5833 and 6205 K) with high-precision observations taken simultaneously with CHEOPS and ESPRESSO. We analyzed the properties of the stellar granulation signal in each individual dataset. We compared them to Kepler observations and 3D hydrodynamic models. While isolating the granulation-induced changes by attenuating and filtering the p-mode oscillation signals, we studied the relationship between photometric and spectroscopic observables. Results. The signature of stellar granulation is detected and precisely characterized for the hotter F star in the CHEOPS and ESPRESSO observations. For the cooler G star, we obtain a clear detection in the CHEOPS dataset only. The TESS observations are blind to this stellar signal. Based on CHEOPS observations, we show that the inferred properties of stellar granulation are in agreement with both Kepler observations and hydrodynamic models. Comparing their periodograms, we observe a strong link between spectroscopic and photometric observables. Correlations of this stellar signal in the time domain (flux versus radial velocities, RV) and with specific spectroscopic observables (shape of the cross-correlation functions) are however difficult to isolate due to S/N dependent variations. Conclusions. In the context of the upcoming PLATO mission and the extreme precision RV surveys, a thorough understanding of the properties of the stellar granulation signal is needed. The CHEOPS and ESPRESSO observations pave the way for detailed analyses of this stellar process.ISSN:0004-6361ISSN:1432-074

    Phase curve and geometric albedo of WASP-43b measured with CHEOPS, TESS, and HST WFC3/UVIS

    No full text
    Context. Observations of the phase curves and secondary eclipses of extrasolar planets provide a window onto the composition and thermal structure of the planetary atmospheres. For example, the photometric observations of secondary eclipses lead to the measurement of the planetary geometric albedo, Ag, which is an indicator of the presence of clouds in the atmosphere. Aims. In this work, we aim to measure the Ag in the optical domain of WASP-43b, a moderately irradiated giant planet with an equilibrium temperature of ~1400 K. Methods. For this purpose, we analyzed the secondary eclipse light curves collected by CHEOPS together with TESS along with observations of the system and the publicly available photometry obtained with HST WFC3/UVIS. We also analyzed the archival infrared observations of the eclipses and retrieve the thermal emission spectrum of the planet. By extrapolating the thermal spectrum to the optical bands, we corrected for the optical eclipses for thermal emission and derived the optical Ag. Results. The fit of the optical data leads to a marginal detection of the phase-curve signal, characterized by an amplitude of 160 ± 60 ppm and 80a-? 50+60 ppm in the CHEOPS and TESS passbands, respectively, with an eastward phase shift of ~50 (1.5Ï ? detection). The analysis of the infrared data suggests a non-inverted thermal profile and solar-like metallicity. The combination of the optical and infrared analyses allows us to derive an upper limit for the optical albedo of Ag< 0.087, with a confidence of 99.9%. Conclusions. Our analysis of the atmosphere of WASP-43b places this planet in the sample of irradiated hot Jupiters, with monotonic temperature-pressure profile and no indication of condensation of reflective clouds on the planetary dayside.ISSN:0004-6361ISSN:1432-074

    Examining the orbital decay targets KELT-9 b, KELT-16 b, and WASP-4b, and the transit-timing variations of HD 97658 b

    No full text
    Context. Tidal orbital decay is suspected to occur for hot Jupiters in particular, with the only observationally confirmed case of this being WASP-12 b. By examining this effect, information on the properties of the host star can be obtained using the so-called stellar modified tidal quality factor Q′∗, which describes the efficiency with which the kinetic energy of the planet is dissipated within the star. This can provide information about the interior of the star. Aims. In this study, we aim to improve constraints on the tidal decay of the KELT-9, KELT-16, and WASP-4 systems in order to find evidence for or against the presence of tidal orbital decay. With this, we want to constrain the Q′∗ value for each star. In addition, we aim to test the existence of the transit timing variations (TTVs) in the HD 97658 system, which previously favoured a quadratic trend with increasing orbital period. Methods. Making use of newly acquired photometric observations from CHEOPS (CHaracterising ExOplanet Satellite) and TESS (Transiting Exoplanet Survey Satellite), combined with archival transit and occultation data, we use Markov chain Monte Carlo (MCMC) algorithms to fit three models to the data, namely a constant-period model, an orbital-decay model, and an apsidal-precession model. Results. We find that the KELT-9 system is best described by an apsidal-precession model for now, with an orbital decay trend at over 2 σ being a possible solution as well. A Keplerian orbit model with a constant orbital period provides the best fit to the transit timings of KELT-16 b because of the scatter and scale of their error bars. The WASP-4 system is best represented by an orbital decay model at a 5 σ significance, although apsidal precession cannot be ruled out with the present data. For HD 97658 b, using recently acquired transit observations, we find no conclusive evidence for a previously suspected strong quadratic trend in the data.ISSN:0004-6361ISSN:1432-074
    corecore