90 research outputs found

    Mach and Reynolds Number Effects on Transonic Buffet on the XRF-1 Transport Aircraft Wing at Flight Reynolds Number

    Get PDF
    This work provides an overview of aerodynamic data acquired in the European Transonic Windtunnel using an XRF-1 transport aircraft configuration both at cruise conditions and at the edges of the flight envelope. The goals and design of the wind tunnel test was described, highlighting the use of the cryogenic wind tunnel's capability to isolate the effects of Mach and Reynolds numbers and the dynamic pressure. The resulting dataset includes an aerodynamic baseline characterization of the full span model with vertical and horizontal tailplanes and without engine nacelles. The effects of different inflow conditions were studied using data from continuous polars, evaluating the changes in aeroelastic deformation which are proportional to q/Eq/E and the influence of MM and ReRe on the shock position. Off-design data was analyzed at the lowest and highest measured Mach numbers of 0.84 and 0.90, respectively. Wing lower surface flow and underside shock motion was analyzed at negative angles of attack using cpc_p distribution and unsteady pressure transducer fluctuation data, identifying significant upstream displacement of the shock close to the leading edge. Wing upper side flow and the shock motion near buffet onset and beyond was analyzed using unsteady pressure data from point transducers and unsteady pressure sensitive paint (PSP) measurements. Buffet occurs at lower angles of attack at high Mach number, and without clearly defined lift break. Spectral contents at the acquired data points in the buffet range suggest broadband fluctuations at Strouhal numbers between 0.2 and 0.6, which is consistent with recent literature. The spanwise shock propagation velocities were determined independently via analysis of unsteady PSP and pressure transducers to be in the range between us/u=0.24u_s / u_{\infty} = 0.24 and 0.320.32

    Mach and Reynolds number effects on transonic buffet on the XRF‑1 transport aircraft wing at flight Reynolds number

    Get PDF
    This work provides an overview of aerodynamic data acquired in the European Transonic Windtunnel using an XRF-1 transport aircraft configuration both at cruise conditions and at the edges of the flight envelope. The goals and design of the wind tunnel test were described, highlighting the use of the cryogenic wind tunnel’s capability to isolate the effects of M∞, Re∞ and the dynamic pressure q/E. The resulting dataset includes an aerodynamic baseline characterization of the full span model with vertical and horizontal tailplanes and without engine nacelles. The effects of different inflow conditions were studied using data from continuous polars, evaluating the changes in aeroelastic deformation which are proportional to q/E and the influence of M∞ and Re∞ on the shock position. Off-design data was analyzed at the lowest and highest measured Mach numbers of 0.84 and 0.90, respectively. Wing lower surface flow and underside shock motion was analyzed at negative angles of attack using cp distribution and unsteady pressure transducer fluctuation data, identifying significant upstream displacement of the shock close to the leading edge. Wing upper-side flow and the shock motion near buffet onset and beyond was analyzed using unsteady pressure data from point transducers and unsteady pressure-sensitive paint (PSP) measurements. Buffet occurs at lower angles of attack at high Mach number, and without clearly defined lift break. Spectral contents at the acquired data points in the buffet range suggest broadband fluctuations at Strouhal numbers between 0.2 and 0.6, which is consistent with recent literature. The spanwise shock propagation velocities were determined independently via analysis of unsteady PSP and pressure transducers to be in the range between us∕u∞ = 0.24 and 0.32, which is similarly in line with published datasets using other swept wing aircraft models

    Quantitative proteomic characterization of cellular pathways associated with altered insulin sensitivity in skeletal muscle following high-fat diet feeding and exercise training

    Get PDF
    Regular exercise elicits advantageous metabolic adaptations in skeletal muscle, such as improved insulin sensitivity. However, the underpinning molecular mechanisms and the effect of diet on muscle exercise training benefits are unclear. We therefore characterized the skeletal muscle proteome following exercise training (ET) in mice fed chow or high-fat diet (HFD). ET increased exercise performance, lowered body-weight, decreased fat mass and improved muscle insulin action in chow-and HFD-fed mice. At the molecular level, ET regulated 170 muscle proteins in chow-fed mice, but only 29 proteins in HFD-fed mice. HFD per se altered 56 proteins, most of which were regulated in a similar direction by ET. To identify proteins that might have particular health-related bearing on skeletal muscle metabolism, we filtered for differentially regulated proteins in response to ET and HFD. This yielded 15 proteins, including the major urinary protein 1 (MUP1), which was the protein most decreased after HFD, but increased with ET. The ET-induced Mup1 expression was absent in mouse muscle lacking functional AMPK. MUP1 also potentiated insulin-stimulated GLUT4 translocation in cultured muscle cells. Collectively, we provide a resource of ET-regulated proteins in insulin-sensitive and insulin-resistant skeletal muscle. The identification of MUP1 as a diet-, ET-and AMPK-regulated skeletal muscle protein that improves insulin sensitivity in muscle cells demonstrates the usefulness of these data

    Aerobic Exercise Training Adaptations Are Increased by Postexercise Carbohydrate-Protein Supplementation

    Get PDF
    Carbohydrate-protein supplementation has been found to increase the rate of training adaptation when provided postresistance exercise. The present study compared the effects of a carbohydrate and protein supplement in the form of chocolate milk (CM), isocaloric carbohydrate (CHO), and placebo on training adaptations occurring over 4.5 weeks of aerobic exercise training. Thirty-two untrained subjects cycled 60 min/d, 5 d/wk for 4.5 wks at 75–80% of maximal oxygen consumption (VO2 max). Supplements were ingested immediately and 1 h after each exercise session. VO2 max and body composition were assessed before the start and end of training. VO2 max improvements were significantly greater in CM than CHO and placebo. Greater improvements in body composition, represented by a calculated lean and fat mass differential for whole body and trunk, were found in the CM group compared to CHO. We conclude supplementing with CM postexercise improves aerobic power and body composition more effectively than CHO alone

    Acute mTOR inhibition induces insulin resistance and alters substrate utilization in vivo.

    Get PDF
    The effect of acute inhibition of both mTORC1 and mTORC2 on metabolism is unknown. A single injection of the mTOR kinase inhibitor, AZD8055, induced a transient, yet marked increase in fat oxidation and insulin resistance in mice, whereas the mTORC1 inhibitor rapamycin had no effect. AZD8055, but not rapamycin reduced insulin-stimulated glucose uptake into incubated muscles, despite normal GLUT4 translocation in muscle cells. AZD8055 inhibited glycolysis in MEF cells. Abrogation of mTORC2 activity by SIN1 deletion impaired glycolysis and AZD8055 had no effect in SIN1 KO MEFs. Re-expression of wildtype SIN1 rescued glycolysis. Glucose intolerance following AZD8055 administration was absent in mice lacking the mTORC2 subunit Rictor in muscle, and in vivo glucose uptake into Rictor-deficient muscle was reduced despite normal Akt activity. Taken together, acute mTOR inhibition is detrimental to glucose homeostasis in part by blocking muscle mTORC2, indicating its importance in muscle metabolism in vivo

    mTORC2 and AMPK differentially regulate muscle triglyceride content via Perilipin 3.

    Get PDF
    OBJECTIVE: We have recently shown that acute inhibition of both mTOR complexes (mTORC1 and mTORC2) increases whole-body lipid utilization, while mTORC1 inhibition had no effect. Therefore, we tested the hypothesis that mTORC2 regulates lipid metabolism in skeletal muscle. METHODS: Body composition, substrate utilization and muscle lipid storage were measured in mice lacking mTORC2 activity in skeletal muscle (specific knockout of RICTOR (Ric mKO)). We further examined the RICTOR/mTORC2-controlled muscle metabolome and proteome; and performed follow-up studies in other genetic mouse models and in cell culture. RESULTS: Ric mKO mice exhibited a greater reliance on fat as an energy substrate, a re-partitioning of lean to fat mass and an increase in intramyocellular triglyceride (IMTG) content, along with increases in several lipid metabolites in muscle. Unbiased proteomics revealed an increase in the expression of the lipid droplet binding protein Perilipin 3 (PLIN3) in muscle from Ric mKO mice. This was associated with increased AMPK activity in Ric mKO muscle. Reducing AMPK kinase activity decreased muscle PLIN3 expression and IMTG content. AMPK agonism, in turn, increased PLIN3 expression in a FoxO1 dependent manner. PLIN3 overexpression was sufficient to increase triglyceride content in muscle cells. CONCLUSIONS: We identified a novel link between mTORC2 and PLIN3, which regulates lipid storage in muscle. While mTORC2 is a negative regulator, we further identified AMPK as a positive regulator of PLIN3, which impacts whole-body substrate utilization and nutrient partitioning

    Phase Transitions, Inhomogeneous Horizons and Second-Order Hydrodynamics

    Full text link
    We use holography to study the spinodal instability of a four-dimensional, strongly-coupled gauge theory with a first-order thermal phase transition. We place the theory on a cylinder in a set of homogeneous, unstable initial states. The dual gravity configurations are black branes afflicted by a Gregory-Laflamme instability. We numerically evolve Einstein's equations to follow the instability until the system settles down to a stationary, inhomogeneous black brane. The dual gauge theory states have constant temperature but non-constant energy density. We show that the time evolution of the instability and the final states are accurately described by second-order hydrodynamics. In the static limit, the latter reduces to a single, second-order, non-linear differential equation from which the inhomogeneous final states can be derived
    corecore