8 research outputs found

    Comparison of liquid chromatography-mass spectrometry and direct infusion microchip electrospray ionization mass spectrometry in global metabolomics of cell samples

    Get PDF
    In this study, the feasibility of direct infusion electrospray ionization microchip mass spectrometry (chip-MS) was compared to the commonly used liquid chromatography-mass spectrometry (LC-MS) in non-targeted metabolomics analysis of human foreskin fibroblasts (HFF) and human induced pluripotent stem cells (hiPSC) reprogrammed from HFF. The total number of the detected features with chip-MS and LC-MS were 619 and 1959, respectively. Approximately 25% of detected features showed statistically significant changes between the cell lines with both analytical methods. The results show that chip-MS is a rapid and simple method that allows high sample throughput from small sample volumes and can detect the main metabolites and classify cells based on their metabolic profiles. However, the selectivity of chip-MS is limited compared to LC-MS and chip-MS may suffer from ion suppression.Peer reviewe

    Modulational instability and nonlocality management in coupled NLS system

    Full text link
    The modulational instability of two interacting waves in a nonlocal Kerr-type medium is considered analytically and numerically. For a generic choice of wave amplitudes, we give a complete description of stable/unstable regimes for zero group-velocity mismatch. It is shown that nonlocality suppresses considerably the growth rate and bandwidth of instability. For nonzero group-velocity mismatch we perform a geometrical analysis of a nonlocality management which can provide stability of waves otherwise unstable in a local medium.Comment: 15 pages, 12 figures, to be published in Physica Script

    Developing therapeutically more efficient Neurturin variants for treatment of Parkinson's disease

    Get PDF
    In Parkinson's disease midbrain dopaminergic neurons degenerate and die. Oral medications and deep brain stimulation can relieve the initial symptoms, but the disease continues to progress. Growth factors that might support the survival, enhance the activity, or even regenerate degenerating dopamine neurons have been tried with mixed results in patients. As growth factors do not pass the blood-brain barrier, they have to be delivered intracranially. Therefore their efficient diffusion in brain tissue is of crucial importance. To improve the diffusion of the growth factor neurturin (NRTN), we modified its capacity to attach to heparan sulfates in the extracellular matrix. We present four new, biologically fully active variants with reduced heparin binding. Two of these variants are more stable than WT NRTN in vitro and diffuse better in rat brains. We also show that one of the NRTN variants diffuses better than its close homolog GDNF in monkey brains. The variant with the highest stability and widest diffusion regenerates dopamine fibers and improves the conditions of rats in a 6-hydroxydopamine model of Parkinson's disease more potently than GDNF, which previously showed modest efficacy in clinical trials. The new NRTN variants may help solve the major problem of inadequate distribution of NRTN in human brain tissue. (C) 2016 Elsevier Inc. All rights reserved.Peer reviewe

    Glial cell line-derived neurotrophic factor receptor REarranged during transfection agonist supports dopamine neurons in Vitro and enhances dopamine release In Vivo

    Get PDF
    Background Motor symptoms of Parkinson's disease (PD) are caused by degeneration and progressive loss of nigrostriatal dopamine neurons. Currently, no cure for this disease is available. Existing drugs alleviate PD symptoms but fail to halt neurodegeneration. Glial cell line-derived neurotrophic factor (GDNF) is able to protect and repair dopamine neurons in vitro and in animal models of PD, but the clinical use of GDNF is complicated by its pharmacokinetic properties. The present study aimed to evaluate the neuronal effects of a blood-brain-barrier penetrating small molecule GDNF receptor Rearranged in Transfection agonist, BT13, in the dopamine system. Methods We characterized the ability of BT13 to activate RET in immortalized cells, to support the survival of cultured dopamine neurons, to protect cultured dopamine neurons against neurotoxin-induced cell death, to activate intracellular signaling pathways both in vitro and in vivo, and to regulate dopamine release in the mouse striatum as well as BT13's distribution in the brain. Results BT13 potently activates RET and downstream signaling cascades such as Extracellular Signal Regulated Kinase and AKT in immortalized cells. It supports the survival of cultured dopamine neurons from wild-type but not from RET-knockout mice. BT13 protects cultured dopamine neurons from 6-Hydroxydopamine (6-OHDA) and 1-methyl-4-phenylpyridinium (MPP+)-induced cell death only if they express RET. In addition, BT13 is absorbed in the brain, activates intracellular signaling cascades in dopamine neurons both in vitro and in vivo, and also stimulates the release of dopamine in the mouse striatum. Conclusion The GDNF receptor RET agonist BT13 demonstrates the potential for further development of novel disease-modifying treatments against PD. (c) 2019 International Parkinson and Movement Disorder SocietyPeer reviewe

    The structure of GFRα1 domain 3 reveals new insights into GDNF binding and RET activation

    No full text
    Glial cell line-derived neurotrophic factor (GDNF) binds to the GDNF family co-receptor α1 (GFRα1) and activates RET receptor tyrosine kinase. GFRα1 has a putative domain structure of three homologous cysteine-rich domains, where domains 2 and 3 make up a central domain responsible for GDNF binding. We report here the 1.8 Å crystal structure of GFRα1 domain 3 showing a new protein fold. It is an all-α five-helix bundle with five disulfide bridges. The structure was used to model the homologous domain 2, the other half of the GDNF-binding fragment, and to construct the first structural model of the GDNF–GFRα1 interaction. Using site-directed mutagenesis, we identified closely spaced residues, Phe213, Arg224, Arg225 and Ile229, comprising a putative GDNF-binding surface. Mutating each one of them had slightly different effects on GDNF binding and RET phosphorylation. In addition, the R217E mutant bound GDNF equally well in the presence and absence of RET. Arg217 may thus be involved in the allosteric properties of GFRα1 or in binding RET

    A Novel Small Molecule GDNF Receptor RET Agonist, BT13, Promotes Neurite Growth from Sensory Neurons in Vitro and Attenuates Experimental Neuropathy in the Rat

    Get PDF
    Neuropathic pain caused by nerve damage is a common and severe class of chronic pain. Disease-modifying clinical therapies are needed as current treatments typically provide only symptomatic relief; show varying clinical efficacy; and most have significant adverse effects. One approach is targeting either neurotrophic factors or their receptors that normalize sensory neuron function and stimulate regeneration after nerve damage. Two candidate targets are glial cell line-derived neurotrophic factor (GDNF) and artemin (ARTN), as these GDNF family ligands (GFLs) show efficacy in animal models of neuropathic pain (Boucher et al., 2000; Gardell et al., 2003: Wang et al., 2008, 2014). As these protein ligands have poor drug-like properties and are expensive to produce for clinical use, we screened 18,400 drug-like compounds to develop small molecules that act similarly to GFLs (GDNF mimetics). This screening identified BT13 as a compound that selectively targeted GFL receptor RET to activate downstream signaling cascades. BT13 was similar to NGF and ARTN in selectively promoting neurite outgrowth from the peptidergic class of adult sensory neurons in culture, but was opposite to ARTN in causing neurite elongation without affecting initiation. When administered after spinal nerve ligation in a rat model of neuropathic pain, 20 and 25 mg/kg of BT13 decreased mechanical hypersensitivity and normalized expression of sensory neuron markers in dorsal root ganglia. In control rats, BT13 had no effect on baseline mechanical or thermal sensitivity, motor coordination, or weight gain. Thus, small molecule BT13 selectively activates RET and offers opportunities for developing novel disease-modifying medications to treat neuropathic pain.Peer reviewe

    The first cysteine-rich domain of the receptor GFRα1 stabilizes the binding of GDNF

    No full text
    The GDNF (glial cell line-derived neurotrophic factor)-binding receptor GFRα1 (GDNF family receptor α1) is attached to the membrane by a GPI (glycosylphosphatidylinositol) anchor and consists of three cysteine-rich domains. The region corresponding to the second and third domains has been shown previously to participate in ligand binding, and to interact with the transmembrane tyrosine kinase receptor RET. No function has so far been found for the N-terminal, first domain (D1). Here we show that the GPI-anchored full-length receptor binds (125)I-GDNF two times more tightly than does a GPI-anchored truncated receptor lacking D1. Scintillation proximity assays with purified receptor proteins also show that the GDNF-binding capacity of the soluble full-length GFRα1 is two times higher than the GDNF-binding capacity of the soluble D1-truncated GFRα1. As RET stabilizes the binding of GDNF equally well to the full-length and truncated receptors, D1 seems not to be involved in the interaction between GFRα1 and RET. Moreover, soluble full-length GFRα1 mediates GDNF-promoted neurite outgrowth in PC6-3 cells more efficiently than the soluble truncated GFRα1 protein. At low concentrations, the soluble fulllength receptor mediates the phosphorylation of RET more efficiently than the soluble truncated receptor. However, when the receptors are overexpressed on the cell surface as GPI-anchored proteins, or added to the growth medium at high concentrations as soluble proteins, full-length and truncated GFRα1 are indistinguishable in GDNF-dependent RET-phosphorylation assays. High levels of the receptors can thus mask a slightly impaired function in the phosphorylation assay. Based on assays with both GPI-anchored and soluble receptors, we therefore conclude that D1 contributes to the optimal function of GFRα1 by stabilizing the interaction between GFRα1 and GDNF
    corecore