21 research outputs found

    Construction and evaluation of novel rhesus monkey adenovirus vaccine vectors

    Get PDF
    Adenovirus vectors are widely used as vaccine candidates for a variety of pathogens, including HIV-1. To date, human and chimpanzee adenoviruses have been explored in detail as vaccine vectors. The phylogeny of human and chimpanzee adenoviruses is overlapping, and preexisting humoral and cellular immunity to both are exhibited in human populations worldwide. More distantly related adenoviruses may therefore offer advantages as vaccine vectors. Here we describe the primary isolation and vectorization of three novel adenoviruses from rhesus monkeys. The seroprevalence of these novel rhesus monkey adenovirus vectors was extremely low in sub-Saharan Africa human populations, and these vectors proved to have immunogenicity comparable to that of human and chimpanzee adenovirus vaccine vectors in mice. These rhesus monkey adenoviruses phylogenetically clustered with the poorly described adenovirus species G and robustly stimulated innate immune responses. These novel adenoviruses represent a new class of candidate vaccine vectors. IMPORTANCE Although there have been substantial efforts in the development of vaccine vectors from human and chimpanzee adenoviruses, far less is known about rhesus monkey adenoviruses. In this report, we describe the isolation and vectorization of three novel rhesus monkey adenoviruses. These vectors exhibit virologic and immunologic characteristics that make them attractive as potential candidate vaccine vectors for both HIV-1 and other pathogens

    Mechanisms of Avian Retroviral Host Range Extension

    No full text
    Alpharetroviruses provide a useful system for the study of the molecular mechanisms of host range and receptor interaction. These viruses can be divided into subgroups based on diverse receptor usage due to variability within the two host range determining regions, hr1 and hr2, in their envelope glycoprotein SU (gp85). In previous work, our laboratory described selection from a subgroup B avian sarcoma-leukosis virus of an extended-host-range variant (LT/SI) with two adjacent amino acid substitutions in hr1. This virus retains its ability to use the subgroup BD receptor but can also infect QT6/BD cells, which bear a related subgroup E receptor (R. A. Taplitz and J. M. Coffin, J. Virol 71:7814-7819, 1997). Here, we report further analysis of this unusual variant. First, one (L154S) of the two substitutions is sufficient for host range extension, while the other (T155I) does not alter host range. Second, these mutations extend host range to non-avian cell types, including human, dog, cat, mouse, rat, and hamster. Third, interference experiments imply that the mutants interact efficiently with the subgroup BD receptor and possibly the related subgroup E receptor, but they have another means of entry that is not dependent on these interactions. Fourth, binding studies indicate that the mutant SU proteins retain the ability to interact as monomers with subgroup BD and BDE receptors but only bind the subgroup E receptor in the context of an Env trimer. Further, the mutant SU proteins bind well to chicken cells but do not bind any better than wild-type subgroup B to QT6 or human cells, even though the corresponding viruses are capable of infecting these cells

    Protective efficacy of a global HIV-1 mosaic vaccine against heterologous SHIV challenges in rhesus monkeys

    No full text
    The global diversity of HIV-1 represents a critical challenge facing HIV-1 vaccine development. HIV-1 mosaic antigens are bioinformatically optimized immunogens designed for improved coverage of HIV-1 diversity. However, the protective efficacy of such global HIV-1 vaccine antigens has not previously been evaluated. Here, we demonstrate the capacity of bivalent HIV-1 mosaic antigens to protect rhesus monkeys against acquisition of infection following heterologous challenges with the difficult-to-neutralize simian-human immunodeficiency virus SHIV-SF162P3. Adenovirus/poxvirus and adenovirus/adenovirus vector-based vaccines expressing HIV-1 mosaic Env, Gag, and Pol afforded a significant reduction in the per-exposure acquisition risk following repetitive, intrarectal SHIV-SF162P3 challenges. Protection against acquisition of infection correlated with vaccine-elicited binding, neutralizing, and functional nonneutralizing antibodies, suggesting that the coordinated activity of multiple antibody functions may contribute to protection against difficult-to-neutralize viruses. These data demonstrate the protective efficacy of HIV-1 mosaic antigens and suggest a potential strategy for the development of a global HIV-1 vaccine. PAPERCLIP

    First-in-human randomized controlled trial of an oral, replicating adenovirus 26 vector vaccine for HIV-1.

    No full text
    BACKGROUND:Live, attenuated viral vectors that express HIV-1 antigens are being investigated as an approach to generating durable immune responses against HIV-1 in humans. We recently developed a replication-competent, highly attenuated Ad26 vector that expresses mosaic HIV-1 Env (rcAd26.MOS1.HIV-Env, "rcAd26"). Here we present the results of a first-in-human, placebo-controlled clinical trial to test the safety, immunogenicity and mucosal shedding of rcAd26 given orally. METHODS:Healthy adults were randomly assigned to receive a single oral dose of vaccine or placebo at 5:1 ratio in a dosage escalation of 10^8 to 10^11 rcAd26 VP (nominal doses) at University of Rochester Medical Center, Rochester, NY, USA. Participants were isolated and monitored for reactogenicity for 10 days post-vaccination, and adverse events were recorded up to day 112. Rectal and oropharyngeal secretions were evaluated for shedding of the vaccine. Humoral and cellular immune responses were measured. Household contacts were monitored for secondary vaccine transmission. RESULTS:We enrolled 22 participants and 11 household contacts between February 7 and June 24, 2015. 18 participants received one dose of HIV-1 vaccine and 4 participants received placebo. The vaccine caused only mild to moderate adverse events. No vaccine-related SAEs were observed. No infectious rcAd26 viral particles were detected in rectal or oropharyngeal secretions from any participant. Env-specific ELISA and ELISPOT responses were undetectable. No household contacts developed vaccine-induced HIV-1 seropositivity or vaccine-associated illness. CONCLUSIONS:The highly attenuated rcAd26.MOS1.HIV-Env vaccine was well tolerated up to 10^11 VP in healthy, HIV-1-uninfected adults, though the single dose was poorly immunogenic suggesting the replicative capacity of the vector was too attenuated. There was no evidence of shedding of infectious virus or secondary vaccine transmission following the isolation period. These data suggest the use of less attenuated viral vectors in future studies of live, oral HIV-1 vaccines. TRIAL REGISTRATION:ClinicalTrials.gov NCT02366013

    Data from: First-in-human randomized controlled trial of an oral, replicating Adenovirus 26 vector vaccine for HIV-1

    No full text
    Background: Live, attenuated viral vectors that express HIV-1 antigens are being investigated as an approach to generating durable immune responses against HIV-1 in humans. We recently developed a replication-competent, highly attenuated Ad26 vector that expresses mosaic HIV-1 Env (rcAd26.MOS1.HIV-Env, “rcAd26”). Here we present the results of a first-in-human, placebo-controlled clinical trial to test the safety, immunogenicity and mucosal shedding of rcAd26 given orally. Methods: Healthy adults were randomly assigned to receive a single oral dose of vaccine or placebo at 5:1 ratio in a dosage escalation of 10^8 to 10^11 rcAd26 VP (nominal doses) at University of Rochester Medical Center, Rochester, NY, USA. Participants were isolated and monitored for reactogenicity for 10 days post-vaccination, and adverse events were recorded up to day 112. Rectal and oropharyngeal secretions were evaluated for shedding of the vaccine. Humoral and cellular immune responses were measured. Household contacts were monitored for secondary vaccine transmission. Results: We enrolled 22 participants and 11 household contacts between February 7 and June 24, 2015. 18 participants received one dose of HIV-1 vaccine and 4 participants received placebo. The vaccine caused only mild to moderate adverse events. No vaccine-related SAEs were observed. No infectious rcAd26 viral particles were detected in rectal or oropharyngeal secretions from any participant. Env-specific ELISA and ELISPOT responses were undetectable. No household contacts developed vaccine-induced HIV-1 seropositivity or vaccine-associated illness. Conclusions: The highly attenuated rcAd26.MOS1.HIV-Env vaccine was well tolerated up to 10^11 VP in healthy, HIV-1-uninfected adults, though the single dose was poorly immunogenic suggesting the replicative capacity of the vector was too attenuated. There was no evidence of shedding of infectious virus or secondary vaccine transmission following the isolation period. These data suggest the use of less attenuated viral vectors in future studies of live, oral HIV-1 vaccines. Clinical Trials Registration: NCT0236601

    Mosaic HIV-1 vaccines expand the breadth and depth of cellular immune responses in rhesus monkeys

    No full text
    The worldwide diversity of HIV-1 presents an unprecedented challenge for vaccine development. Antigens derived from natural HIV-1 sequences have elicited only a limited breadth of cellular immune responses in nonhuman primate studies and clinical trials to date. Polyvalent 'mosaic' antigens, in contrast, are designed to optimize cellular immunologic coverage of global HIV-1 sequence diversity. Here we show that mosaic HIV-1 Gag, Pol and Env antigens expressed by recombinant, replication-incompetent adenovirus serotype 26 vectors markedly augmented both the breadth and depth without compromising the magnitude of antigen-specific T lymphocyte responses as compared with consensus or natural sequence HIV-1 antigens in rhesus monkeys. Polyvalent mosaic antigens therefore represent a promising strategy to expand cellular immunologic vaccine coverage for genetically diverse pathogens such as HIV-1
    corecore