133 research outputs found

    Dissipative chaotic scattering

    Get PDF
    We show that weak dissipation, typical in realistic situations, can have a metamorphic consequence on nonhyperbolic chaotic scattering in the sense that the physically important particle-decay law is altered, no matter how small the amount of dissipation. As a result, the previous conclusion about the unity of the fractal dimension of the set of singularities in scattering functions, a major claim about nonhyperbolic chaotic scattering, may not be observable.Comment: 4 pages, 2 figures, revte

    Sedimentation and Flow Through Porous Media: Simulating Dynamically Coupled Discrete and Continuum Phases

    Full text link
    We describe a method to address efficiently problems of two-phase flow in the regime of low particle Reynolds number and negligible Brownian motion. One of the phases is an incompressible continuous fluid and the other a discrete particulate phase which we simulate by following the motion of single particles. Interactions between the phases are taken into account using locally defined drag forces. We apply our method to the problem of flow through random media at high porosity where we find good agreement to theoretical expectations for the functional dependence of the pressure drop on the solid volume fraction. We undertake further validations on systems undergoing gravity induced sedimentation.Comment: 22 pages REVTEX, figures separately in uudecoded, compressed postscript format - alternatively e-mail '[email protected]' for hardcopies

    Lattice Boltzmann simulations of soft matter systems

    Full text link
    This article concerns numerical simulations of the dynamics of particles immersed in a continuum solvent. As prototypical systems, we consider colloidal dispersions of spherical particles and solutions of uncharged polymers. After a brief explanation of the concept of hydrodynamic interactions, we give a general overview over the various simulation methods that have been developed to cope with the resulting computational problems. We then focus on the approach we have developed, which couples a system of particles to a lattice Boltzmann model representing the solvent degrees of freedom. The standard D3Q19 lattice Boltzmann model is derived and explained in depth, followed by a detailed discussion of complementary methods for the coupling of solvent and solute. Colloidal dispersions are best described in terms of extended particles with appropriate boundary conditions at the surfaces, while particles with internal degrees of freedom are easier to simulate as an arrangement of mass points with frictional coupling to the solvent. In both cases, particular care has been taken to simulate thermal fluctuations in a consistent way. The usefulness of this methodology is illustrated by studies from our own research, where the dynamics of colloidal and polymeric systems has been investigated in both equilibrium and nonequilibrium situations.Comment: Review article, submitted to Advances in Polymer Science. 16 figures, 76 page

    Hypoplastic Left Heart Syndrome Current Considerations and Expectations

    Get PDF
    In the recent era, no congenital heart defect has undergone a more dramatic change in diagnostic approach, management, and outcomes than hypoplastic left heart syndrome (HLHS). During this time, survival to the age of 5 years (including Fontan) has ranged from 50% to 69%, but current expectations are that 70% of newborns born today with HLHS may reach adulthood. Although the 3-stage treatment approach to HLHS is now well founded, there is significant variation among centers. In this white paper, we present the current state of the art in our understanding and treatment of HLHS during the stages of care: 1) pre-Stage I: fetal and neonatal assessment and management; 2) Stage I: perioperative care, interstage monitoring, and management strategies; 3) Stage II: surgeries; 4) Stage III: Fontan surgery; and 5) long-term follow-up. Issues surrounding the genetics of HLHS, developmental outcomes, and quality of life are addressed in addition to the many other considerations for caring for this group of complex patients

    Organizing solidarity initiatives : a socio-spatial conceptualization of resistance

    Get PDF
    This paper offers a spatial conceptualization of resistance by focusing on the practices through which solidarity initiatives constitute new resistance socio-spatialities. We discuss two solidarity initiatives in Greece, WCNA and Vio.Me.SI, and explore how they institute distinctive local and translocal organizational practices that make the production of new forms of resistance possible. In particular, we adopt a productive and transformative view of resistance. First, we identify three local practices of organizing solidarity initiatives, namely, the organization of general assembly meetings, the constitution of resistance laboratories and the (re)articulation of socio-spatial relations in local sites. Then, we turn to flows, movements and translocal social formations, and examine the role of solidarity mobilizations, the material and symbolic co-production of resources and members’ mobility in the production of resistance. We conclude that new resistance socio-spatialities become constitutive of a broader reconfiguration of political agencies, a creative process that challenges existing relations and invites alternative ways of working and organizing

    Particles-vortex interactions and flow visualization in He4

    Full text link
    Recent experiments have demonstrated a remarkable progress in implementing and use of the Particle Image Velocimetry (PIV) and particle tracking techniques for the study of turbulence in He4. However, an interpretation of the experimental data in the superfluid phase requires understanding how the motion of tracer particles is affected by the two components, the viscous normal fluid and the inviscid superfluid. Of a particular importance is the problem of particle interactions with quantized vortex lines which may not only strongly affect the particle motion, but, under certain conditions, may even trap particles on quantized vortex cores. The article reviews recent theoretical, numerical, and experimental results in this rapidly developing area of research, putting critically together recent results, and solving apparent inconsistencies. Also discussed is a closely related technique of detection of quantized vortices negative ion bubbles in He4.Comment: To appear in the J Low Temperature Physic
    corecore